
Princeton University
Department of Operations Research

and Financial Engineering

ORF 201
Computer Methods in Problem Solving

Lab 6: Facility Location

Due Sunday, Mar 26, 11:59 pm

1. INTRODUCTION

This assignment is about finding the best location for a “facility”. We assume that there aren
“customers” that already exist and are located at specific places. There are many different real-
world applications for problems of this kind including

• Centrally locating a factory relative to existing distribution warehouses.
• Locating a central switching station in a communication network.
• Centrally locating a state capitol relative to the other populous cities in the state.
• Circuit placement in a computer chip.
• Locating a hub airport for an airline that uses hub-and-spoke routing.

The facility needs to be placed in a location that minimizes the facility-to-customer travel distances.
While specific real-world situations may introduce various complications, such as computing dis-
tances along an existing road network, we shall simply assume that the objective is to minimize
the sum of the straight-line distances from the facility to each of then given customers.

One obvious suggestion would be to place the facility at thecentroidof then customers. Denoting
the location vector of thei-th customer bypi = (px

i , p
y
i ), the centroid̄p is very easy to calculate:

p̄ =
1

n

n∑
i=1

pi.

But this location does not minimize the sum of the distances. For example, consider3 points on a
line, say thex-axis. Assume that one of them is at position0, another is at position2, and the third
is at position100. The centroid is at position(0+2+100)/3 = 34. From this location, the sum of
the distances is34 + 32 + 66 = 132. Now, consider placing the facility at position2. The sum of
the distances from this location is2+0+98 = 100. Hence, position2 is much better than position
34. In fact, one can show that position2 minimizes the sum of the distances.

1



2

It turns out that the centroid minimizes the sum of thesquaresof the distances. It is hard to imagine
a logistics problem in which travel time or travel cost would be proportional to the square of the
distance. Hence, the centroid is usually inappropriate in facility-location type problems.

The fact that the centroid minimizes the sum of the squares of the distances implies that customer
locations that are far from the majority of the customers have too much influence over the centroid.
For this reason, the centroid is said to put too much weight onoutliers.

2. WEISZFELD’ S ITERATION SCHEME

Unfortunately, there is no simple formula for the location that minimizes the sum of the distances.
There is, however, a simple iteration scheme that starts with an arbitrary location and iteratively
computes better locations. If one were to run the iteration scheme for ever, it would converge to
the location that minimizes the sum of the distances. Lettingq0 = (qx

0 , qy
0) denote the (arbitrary)

initial location, the iteration scheme works as follows:

q1 =

∑
i pi/‖pi − q0‖∑
i 1/‖pi − q0‖

q2 =

∑
i pi/‖pi − q1‖∑
i 1/‖pi − q1‖

q3 =

∑
i pi/‖pi − q2‖∑
i 1/‖pi − q2‖

...

qk+1 =

∑
i pi/‖pi − qk‖∑
i 1/‖pi − qk‖

...

This algorithm is calledWeiszfeld’s iteration scheme. Don’t forget that boldface letters denote
vectors and so, for example,

‖pi − q0‖ =
√

(px
i − qx

0 )2 + (py
i − qy

0)
2.

It can be shown that for one-dimensional problems, the median of the locations minimizes the sum
of the distances. Hence, the point that minimizes the sum of the distances in higher dimensions is
called themultidimensional medianand this assignment can be viewed as writing code to compute
mulitdimensional medians.

3. GETTING STARTED

As usual, you need to create some directories and copy some files. Begin like this:

cd public_html/JAVA/ORF201
mkdir median



3

cd median

Then copy the following files:

cp /u/orf201/public_html/JAVA/ORF201/median/index.html .
cp /u/orf201/public_html/JAVA/ORF201/median/median.html .
cp /u/orf201/public_html/JAVA/ORF201/median/Median.java .

4. COMPILING

First, compile the java code that you just copied over:

javac Median.java

Then use appletviewer to see what the code currently does:

appletviewer median.html

An applet window should pop up with an editable text field for entering the number of customers,
a button (labeled Mediate), and an empty drawing canvas below. At the moment, if you push the
Mediate button nothing happens. That is because the main part of the code has been stripped
out. It is your job to fill it in according to the instructions given below.

5. PROGRAMMING NOTES

In the method that computes each iteration of the Weiszfeld scheme, you’ll need to put a call to
paint() :

paint(getGraphics());

If you want to slow down the calculation so that you have time to watch the animation, after the
call topaint() you can add the following line:

try { Thread.sleep(150); } catch(InterruptedException ie){}

The number150 in the call toThread.sleep() instructs the program to sleep for0.150 seconds
before continuing. Of course, the value150 can be adjusted as you feel appropriate.

6. MEDIAN .HTML

Don’t forget to editmedian.html to make the following changes:



4

• Changecodebase from "../.." tohttp://www.princeton.edu/ ∼yourname/JAVA .
• Add the honor code pledge:

This program represents my own work in accordance with University regulations.

7. GOING PUBLIC

If your umask is set for restricted access (i.e., 077), don’t forget to make your files public:

chmod a+rx public_html/JAVA/ORF201/median
chmod a+r public_html/JAVA/ORF201/median/index.html .
chmod a+r public_html/JAVA/ORF201/median/median.html .
chmod a+r public_html/JAVA/ORF201/median/Median.class .

After you’ve made your files public check to see if you can bring your applet up in a browser. Fire
up netscape and go to the following address:

http://www.princeton.edu/˜yourname/JAVA/ORF201/median/median.html

If your code works and permissions are set correctly, you should see the median applet in the
browser.

8. MINIMUM REQUIREMENTS

At a minimum:

(1) Implement Weiszfeld’s iteration scheme.
(2) Develop and implement a reasonable stopping rule for the iteration scheme.
(3) Depict the successive iterations graphically. Draw lines connecting the current approximate

multidimensional median to each of the customer locations.
(4) Compute and plot the centroid.
(5) Compute and plot the location whosex-component is the one-dimensional median of the

x-components of each customer location and whosey-component is the one-dimensional
median of they-components of each customer location.

(6) Define methods as appropriate to partition the problem into well-defined subtasks.


	1. Introduction
	2. Weiszfeld's Iteration Scheme
	3. Getting Started
	4. Compiling
	5. Programming Notes
	6. Median.html
	7. Going Public
	8. Minimum Requirements

