Lecture 20

Shortest Paths: The Last Lab

Decimal vs. Fraction
Shortest Paths Problem

Given:
• Network: \((N, A)\)
• Costs = Travel times: \(c_{ij}, (i, j) \in A\)
• Home (root): \(r \in N\)

Problem: Find shortest path from every node in \(N\) to root.
Dijkstra’s Algorithm

Notation:
• Put $v_i = \text{min time from } i \text{ to } r$
 - Called label in networks literature.
 - Called value in dynamic programming literature.
• $F = \text{set of finished nodes (labels are set)}$.
• $h_i, i \in N = \text{next node to visit after } i \text{ (heading)}$.

Dijkstra’s Algorithm:
• Initialize:
 $F = \emptyset$

 $v_i = \begin{cases}
 0 & j = r \\
 \infty & j \neq r
 \end{cases}$
• Iterate:
 - Select unfinished node with smallest v_k. Call it j.
 - Add j to set of finished nodes F.
 - For each unfinished node i having an arc connecting it to j:
 - If $c_{ij} + v_j < v_i$, then set

 $$v_i = c_{ij} + v_j$$
 $$h_i = j$$
 • Stop: when no unfinished nodes remain
Dijkstra’s Algorithm - Complexity

• Each iteration finishes one node: \(m \) iterations
• Work per iteration:
 - Selecting an unfinished node:
 - Naively, \(m \) comparisons.
 - Using appropriate data structures, a heap, \(\log m \) comparisons.
 - Update adjacent arcs
• Overall: \(m \log m + n \)
Fractions

Two choices:

Create a `Fraction` class consisting of two integers, `num` and `den`, and write all code using `Fraction` instead of `double`.

Write all code using `double` to represent numbers. Convert from/to fraction format on input/output.

- **Advantages:**
 - Seems safer - one implements exactly what one expects: greatest common denominator, reduction to simplest form, etc.
 - Simple to program.
 - Very little danger of overflow.
 - Easy to switch between decimal and fraction format.

- **Disadvantages:**
 - Integer overflow during temporary computation is a danger.
 - Code is hard to read: e.g. `z = x.add(y)` to add `Fraction x` and `y` and store in `z`.
 - Could make small mistakes.
Converting Reals to Fractions

Two methods:
- **Brute Force**: Start with $\text{den} = 1$ and try each possible den until the associated num is an integer (with a small tolerance). This works but is terribly inefficient.
- **Continued Fractions**: Represent a real number x by its continued fraction expansion:

$$x = b_0 + \cfrac{1}{b_1 + \cfrac{1}{b_2 + \cfrac{1}{b_3 + \ldots}}}$$

Truncate after a finite number of terms. This method is amazingly efficient.

Computing the b_j’s:
- Put $t_0 = x$
- Put $b_j = \text{greatest_integer}(t_j)$
- Put $t_{j+1} = 1/(t_j - b_j)$.
- Repeat.
Rationalizing Continued Fractions

How many terms? Unlike series expansions, you can’t just evaluate a continued fraction from left to right stopping when the change gets small.

The obvious way to compute starts with a blind guess of how many terms to use, then starts at the right and works back up to the left.

But there is a beautiful way to compute from left to right.

Let:

\[
\frac{A_j}{B_j} = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \ldots + \frac{1}{b_j}}} \]

Initialize:

\[
\begin{align*}
A_{-1} &= 1 & A_1 &= b_0 \\
B_{-1} &= 0 & B_1 &= 1
\end{align*}
\]

Compute each ratio successively:

\[
\begin{align*}
A_j &= b_{j-1}A_{j-1} + A_{j-2} \\
B_j &= b_{j-1}B_{j-1} + B_{j-2}
\end{align*}
\]

Proof by induction:

First check \(j = 1 \):

\[
\frac{A_1}{B_1} = b_0 + \frac{1}{b_1} = \frac{b_1b_0 + 1}{b_1} = \frac{b_1A_0 + A_{-1}}{b_1B_0 + B_{-1}}
\]

Now assume true for all \(1, 2, \ldots, j - 1 \) and check it for \(j \).
Method contFrac in class Format

static public String contFrac(int width, int precision, double t) {
 int bj=0, Aj=0, Aj1, Aj2, Bj=1, Bj1, Bj2, num, den;
 boolean pos;
 double tj, maxDen = Math.pow(10, precision);
 String numstr0, numstr;
 if (t >= 0) { pos = true; tj = t; }
 else { pos = false; tj = -t; }
 bj = (int) (tj+1.0e-12);
 tj = 1/(tj-bj);
 Aj = bj; Aj1 = 1;
 Bj = 1; Bj1 = 0;
 num = Aj;
 den = Bj;
 if (!pos) {num = -num;}
 numstr0 = "";
 numstr = fracString(num, den, width, precision);
 while (Math.abs(t - Aj/(double)Bj) > 1.0e-12
 && numstr.length() < width && Bj < maxDen) {
 Aj2 = Aj1; Aj1 = Aj;
 Bj2 = Bj1; Bj1 = Bj;
 bj = (int) (tj+1.0e-12);
 tj = 1/(tj-bj);
 Aj = bj*Aj1 + Aj2;
 Bj = bj*Bj1 + Bj2;
 num = Aj;
 den = Bj;
 if (!pos) {num = -num;}
 numstr0 = numstr;
 numstr = fracString(num, den, width, precision);
 }
 return numstr0;
}
A Test Program

```java
import myutil.*;

public class ContFrac {
    public static void main(String[] args) {
        double x = Math.PI;

        /****************************************************
         * using static formatting methods                  *
        /****************************************************
        System.out.println();
        System.out.println("Using static formatting methods");

        System.out.println();
        System.out.println("pi = " + Format.floating(10, 5, x));
        for (int j=0; j<10; j++) {
            System.out.println("pi = " + Format.contFrac(2*j+1, j, x));
        }
    }
}
```