
(C) Princeton University

COMPUTER METHODS FOR PROBLEM SOLVING
ORF 201

Lecture 8

Java is Pointerless?

2

• Don’t wait until the last day to start.
• Develop incrementally. Start with a working program.
 Make small changes. Check that the program still works.

Hints on Programming

3

• Come prepared, having read the assignment, having read the textbook,
 having listened in lecture, having prepared the outline below.

• Copy working version of Integra.java from orf201.

• Add a method func() to evaluate a function. For starters, let the
 function be f(x) =x2.

• Call func() from integrate() with a few choice values
 and print out the values computed to make sure func() works
 properly.

• Write code in paint() to draw the function defined by func().

Example of incremental development

4

• Write a method rect() to compute the area using the rectangle rule. Put a
 call to this method in integrate(). Use System.out.println to
 print out the answer. Run with lowx = 0, highx = 1, n = 1. Compare
 this answer against a hand calculation. Try some other simple cases.

• Make a new method called trap(). Copy the code in rect() to trap().
 Modify the code just copied so that it implements the trapezoidal rule. Test as
 above.

• Add code to paint() to illustrate the approximating rectangles. Test with
 small values of n.

• Add code to paint() to illustrate the approximating trapezoids. Test with
 small values of n.

• Change function implemented in func() to the complicated exponential
 function given in the assignment.

Example of incremental development

5

 n

252

 x

256

12

Initialize Variable:
 n = 12;

Initialize Array:
 x = new double[n];

Initialize Array Elements:
 for (j=0; j<n; j++) {
 x[j] = j*j;
 }

x[0]

342

x[1]

350

x[2]

358

x[3]

366

x[4]

374

x[5]

382

x[6]

390

x[7]

398

x[8]

406

x[9]

414

x[10]

422

x[11]

430

0 1 9 16 25 36 49 121 100 4 64 81

Declare:
 int n;
 double[] x;

Memory Layout: Variables and Arrays

342

Look mom, it’s a pointer!

6

z.zip

350

z.lat

354

z.lon

362

 z

346

Instantiate Class Variable:

 z = new Zip();

Declare:

 Zip z;

Initialize Components:

 z.zip = “90210”;
 z.lat = 34.09;
 z.lon = 118.41;

90210 34.09 118.41

Memory Layout: Class Variables

350

7

Initialize Array Variable:

 zlist = new Zip[100];

Declare:

 Zip[] zlist;

Initialize Components:

 for (j=0; j<100; j++) {
 zlist[j].zip = Console.in.ReadInt();
 zlist[j].lat = Console.in.ReadDouble();
 zlist[j].lon = Console.in.ReadDouble();
 }

Memory Layout: Arrays of Class Variables

Initialize Array Elements:
 for (j=0; j<n; j++) {
 zlist[j] = new Zip();
 }

zlist[0]

342

zlist[1]

346

zlist[2]

350

zlist[99]

738

…

zlist

244

342

zlist[0].zip

960

zlist[0].lat

964

zlist[0].lon

972

zlist[99].zip

2940

zlist[99].lat

2944

zlist[99].lon

2952

zlist[1].zip

980

zlist[1].lat

984

zlist[1].lon

992
.
.
.

960 980 1000 2940

8

Java Has Pointers

int n;
double[] x;
Zip z;
Zip[] zlist;

This makes an instance
of an integer.

These only make pointers
to objects of the type
mentioned.

9

x = new double[12];
z = new Zip();
zlist = new Zip[10];

What does new do?
new makes an instance and gives a pointer to it.

x is now an array of
doubles and using x[j]
is now allowed.

zlist is now an array of Zips.
But each of the elements is just a
pointer that still needs to be told
where to point:

z is now an instance of
Zip. It is now possible
to put things into the
individual fields.

for (int j=0; j<10; j++) {
 zlist[j] = new Zip();
}

 Now, finally, the individual fields of zlist[j]can be used.

