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Course Info

Prereqs: Three semesters of Calculus

Textbook: Mathematical Statistics and Data Analysis by John A. Rice

Grading: Homework: 45%
Midterm 1: 15%
Midterm 2: 15%
Final: 20%
Participation: 5%

Homework: • Will be due every week at 5pm on Friday.

• Turn homework in via ORF245 drop box in Sherrerd Hall.

• The lowest homework grade will be dropped.

Midterms: Midterms will be in-class on Wednesday of the 5th and 10th weeks.

Lectures: Reading material will be posted in advance of each lecture. You are expected
to read the reading material before lecture.

Slides: The slides will be posted online. But, they are not a replacement for the lecture.
They are just my notes to remind me what to say. You must go to lecture to
hear what I have to say.
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Introduction

Statistics is about extracting meaningful conclusions from noisy data. Here’s an example.
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Is there a warming trend? If yes, what is the rate of warming?
Eventually, we will answer this question.
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Matlab

In this class we will do some statistical computing.

We will also want to be able to plot data.

For these tasks, we will use a computer programming language called Matlab.

Here’s the code that was used to make the plot on the previous page.

load -ascii 'mat_output'
t=mat_output(:,1);
avg=mat_output(:,2);
plot(t,avg,'.b');
xlabel('Date');
ylabel('Avg Temp (degrees F)');
title('Average Daily Temperatures at McGuire AFB');

Before delving deeply into statistics, we need to have a good grasp of what we mean by
“noisy” data.

So, we lay the groundwork with some probability...
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Sample Spaces and Events

When considering experiments to be performed, we need to define the set of possible out-
comes.

The set is called the sample space and is usually denoted by Ω.

A sample space can be either finite or infinite.

Examples:

• Toss a coin: Ω = {H,T}.
• Roll a die: Ω = {1, 2, 3, 4, 5, 6}.
• Roll a pair of dice: Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
• How long from now until the next major earthquake in California: Ω = {t | t ≥ 0}.

Subsets of Ω are called events. They are usually denoted by capital letters like A or B.

Example:

• Roll a pair of dice and consider the event that the sum is 4:

A = {(1, 3), (2, 2), (3, 1)} ⊂ Ω.
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And, Or, Not, etc.

Intersection: Event A and B both occur is written A ∩B.

Union: Event A or B occurs is written A ∪B.

Complement: Event A does not occur is written Ac.

Empty Set: The set containing no elements is denoted ∅.
Disjoint: Sets A and B are disjoint if A ∩B = ∅.

Probability

Probabilities are numbers assigned to events. They must satisfy the following properties:

• P (Ω) = 1.

• P (A) ≥ 0 for all A ⊂ Ω.

• If A1 and A2 are disjoint, then P (A1 ∪ A2) = P (A1) + P (A2).

It follows that

• P (Ac) = 1− P (A).

• P (∅) = 0.

• P (A) ≤ P (B) whenever A ⊂ B.
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Finite Sample Spaces

Examples:

1. Flip two pennies and let Ω = {(h, h), (h, t), (t, h), (t, t)}. Then,

P (one head and one tail) = P ({(h, t)} ∪ {(t, h)}) = P ({(h, t)}) + P ({(t, h)})

=
1

2
· 1

2
+

1

2
· 1

2
=

1

2

2. Flip two pennies and let Ω = {“two heads”, “one head”, “no heads”.}. Then,

P (one head and one tail) = hmmm... hard to say

3. Roll a pair of dice and let Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}. Then,

P (sum is 4) = P (1, 3) + P (2, 2) + P (3, 1) = 3/36

6



Conditional Probability

Definition. The conditional probability of A given that B is known to have occurred is

P (A|B) =
P (A ∩B)

P (B)
.

Law of Total Probability. Let B1, B2, . . . , Bn be a disjoint collection of sets each having
positive probability whose union is all of Ω. Then,

P (A) =
n∑

i=1

P (A|Bi)P (Bi).

Bayes’ Rule. If, in addition to the assumptions above, P (A) > 0, then

P (Bj|A) =
P (A|Bj)P (Bj)
n∑

i=1

P (A|Bi)P (Bi)

.

If the disjoint collection consists of just two sets, B and Bc, then the formula can be written
more simply as

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.
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Example of Bayes’ Rule

Consider women of a certain given age and overall health status.

Facts:

• Probability that a woman has breast cancer = P (B) = 1%.

• Probability that a mammogram will give a positive result (indicating cancer is present)
(event A) for women who are known to have cancer = P (A|B) = 80%.

• A women who is known not to have cancer will test positive 10% of the time. That is,
P (A|Bc) = 10%.

Question: If a woman tests positive for breast cancer, what is the probability that she actually
has breast cancer? That is, what is P (B|A)?

Cancer doctors were asked this question. Most estimated the answer to be 75%.
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Example of Bayes’ Rule

Consider women of a certain given age and overall health status.

Facts:

• Probability that a woman has breast cancer = P (B) = 1%.

• Probability that a mammogram will give a positive result (indicating cancer is present)
(event A) for women who are known to have cancer = P (A|B) = 80%.

• A women who is known not to have cancer will test positive 10% of the time. That is,
P (A|Bc) = 10%.

Question: If a woman tests positive for breast cancer, what is the probability that she actually
has breast cancer? That is, what is P (B|A)?

Cancer doctors were asked this question. Most estimated the answer to be 75%.

Let’s compute:

P (B|A) =
(0.8)(0.01)

(0.8)(0.01) + (0.1)(0.99)
=

8

8 + 99
≈ 7.5%.
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Venn Diagram
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Independence

Events A and B are independent means

P (A) = P (A|B)

P (B) = P (B|A)
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Independence

Events A and B are independent means

P (A) = P (A|B) =
P (A ∩B)

P (B)

P (B) = P (B|A) =
P (A ∩B)

P (A)

P (A ∩B) = P (A)P (B)
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Ch. 1, Number 13

In a game of poker, what is the probability that a five-card hand will contain

(a) a straight (five cards in a numerical sequence not all from same suit),

(b) four of a kind (four cards of one value), and

(c) a full house (three cards of one value and two cards of another)?

(a)
10 · (45 − 4)

(52 · 51 · 50 · 49 · 48)/(5 · 4 · 3 · 2 · 1)
= 0.00392

(b)
13 · 48(

52
5

) = 0.000240

(c)
13 · 12 ·

(
4
3

)(
4
2

)(
52
5

) = 0.001441
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Example E: Birthday Problem

In a classroom of n students, what’s the probability pn that two (or more) students share
the same birthday?

It’s easier to compute the probability that no two students share a birthday.
Let’s look at the students one at a time.
The first student can have any birthday he/she likes.
The second student cannont share the first student’s birthday: 364 choices.
The third student cannot share either of the first two birthdays: 363 choices.
... Etc. ...
The n-th student cannot share any of the previous n− 1 birthdays: 365− n + 1 choices.
Therefore, probability of no shared birthdays is

365 · 364 · · · (365− n + 1)

365n

and the probability of a shared birthday is

pn = 1− 365 · 364 · · · (365− n + 1)

365n
.

For n = 23, the answer is
p23 = 0.507.
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Example: Monty Hall Problem

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows
what’s behind the doors, opens another door, say No. 3, which has a goat. He then says to
you, “Do you want to pick door No. 2?” Is it to your advantage to switch your choice?
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Ch. 1, Number 56

A couple has two children.

(a) What is the probability that both are girls given that the oldest is a girl?

(b) What is the probability that both are girls given that one of them is a girl?

Let Ω = {(f, f ), (f,m), (m, f ), (m,m)} (gender of older followed by gender of younger).

Let A = “both are girls” = {(f, f )}.

Let B = “oldest is a girl” = {(f, f ), (f,m)}.

Let C = “at least one is a girl” = {(f, f ), (f,m), (m, f )}.

(a) P (A|B) = 1/2.

(b) P (A|C) = 1/3.
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Ch. 1, Number 65

Show that if A and B are independent, then A and Bc are independent and so are Ac and
Bc.

Given: P (A ∩B) = P (A)P (B).

Compute:

P (A ∩Bc) = P (A)− P (A ∩B)

= P (A)− P (A)P (B)

= P (A)
(
1− P (B)

)
= P (A)P (Bc)

P (Ac ∩Bc) = P ((A ∪B)c)

= 1− P (A ∪B)

= 1− P (A)− P (B) + P (A ∩B)

= 1− P (A)− P (B) + P (A)P (B)

=
(
1− P (A)

) (
1− P (B)

)
= P (Ac)P (Bc)
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Frequentist Approach – Coin Tossing
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Matlab Code

ht = randi([0,1],[1,1000]);
St = cumsum(ht);
Xt = St./(1:1000);

figure(1);
plot(1:1000,Xt,'k-');
ylim([-0.02 1.02]);
xlabel('number of tosses');
ylabel('fraction of heads');
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