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Median and Mode

Let X be a random variable with cdf F (x) and pdf f (x). Recall that the mean, µ, of X is
defined as the expected value of X:

µ = E(X) =

∫ ∞
−∞

xf (x)dx.

Another “measure of location” is the median, η. It is that place on the real line where the
probability that X comes out bigger than η (or smaller than η) is exactly 1/2. In terms of
the cdf, we can write that

F (η) = 1/2 or equivalently η = F−1(1/2)

Let X1, X2, . . . , Xn be a finite collection of independent identically distributed random vari-
ables. In Chapter 7, we derived a formula for the confidence interval associated with esti-
mating the mean µ.
Our aim a few slides hence is to derive a confidence interval for the median η.

A third measure of location is the mode. It is the value of x that has the greatest “likelihood”
as measured by the pdf:

mode = argmaxxf (x).
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Log-Normal Distribution

The best example of random variables for which the mean and median differ are those with
the log-normal distribution. A random variable Y is said to have a log-normal distribution if
the log of Y has a normal distribution. So, suppose that

Y = eµ+σX

where X is a standard normal random variable.

Let’s compute the mean value of Y :

E(Y ) = Eeµ+σX =

∫ ∞
−∞

eµ+σx
1√
2π
e−

x2

2 dx = eµ
∫ ∞
−∞

1√
2π
e−

x2

2 +σxdx

= eµ
∫ ∞
−∞

1√
2π
e−

(x−σ)2
2 +σ2

2 dx = eµ+
σ2

2

We compute the median as follows:

1

2
= P (Y ≤ y) = P (eµ+σX ≤ y) = P (µ + σX ≤ log(y)) = P (σX ≤ log(y)− µ)

By the symmetry of the standard normal distribution, we see that log(y) − µ = 0 which
translates to

Median(Y ) = eµ

The mode is also “easy” to compute: Mode(Y ) = eµ−σ
2
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Mode vs. Median vs. Mean
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Mean = 1.13

x = 0.01:0.01:3;

y = pdf('logn',x,0,1/2);

plot(x,y,'k-');

hold on;

fill([x(100:end) x(end) x(100)], [y(100:end) 0 0], 'c');

l1=plot([0.78 0.78], [0 y(78)], 'g-.');

l2=plot([1.00 1.00], [0 y(100)], 'r-.');

l3=plot([1.13 1.13], [0 y(113)], 'b-.');

legend([l1,l2,l3], 'Mode = 0.78', 'Median = 1', 'Mean = 1.13');
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Order Statistics — Sample Median

As before, let X1, X2, . . . , Xn be a finite collection of independent identically distributed
random variables.

Rearrange these n random numbers into increasing order:

X(1) ≤ X(2) ≤ · · · ≤ X(n)

In other words, X(1) is the smallest of the n random numbers and X(n) is the largest of the
set. Written like this in increasing order, these derived random variables are called the order
statistics.

If n is odd, the middle point, X((n+1)/2), is called the sample median.

The order statistics allow us to make a confidence interval for the median. To this end, for
any fixed integer k, we start by computing

P (X(j) ≤ η ≤ X(j+1)) = P (exactly j of the Xi’s are less than η) =

(
n

j

)
1

2n

the second equality follows from the fact that each Xj is less than η with probability 1/2 and
these are independent events. Hence, the number of them that are less than η is a binomial
random variable with parameter 1/2.
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Confidence Interval for the Median

From

P (X(j) ≤ η ≤ X(j+1)) =

(
n

j

)
1

2n

it follows that

P (X(k) ≤ η ≤ X(n−k+1)) =
n−k∑
j=k

(
n

j

)
1

2n

If we pick k such that the right-hand side is close to 0.95, then we get that

P (X(k) ≤ η ≤ X(n−k+1)) ≈ 0.95

In other words, for such a choice of k,

X(k) ≤ η ≤ X(n−k+1)

is a 95% confidence interval for the median η.
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Finding k

For n small, k can be found by explicitly computing

k−1∑
j=0

(
n

j

)
1

2n

for small values of k and stopping when this sum is approximately 0.025.

For large values of n, we can apply to the Central Limit Theorem.

Specifically, let Y be a binomial random variable with mean p = 1/2 and n equal to the
number of Xi’s. We know that

E(Y ) = np =
n

2
and Var(Y ) = npq =

n

4

If n is large (say, greater than 20), Y is approximately normally distributed and therefore
95% of the probability falls with two standard deviations of the mean. Hence,

k =
n

2
−
√
n

rounded off to the nearest integer.
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Local Climate Data – Forty Year Differences
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Forty−Year Temperature Differences

n = 5699

On a degrees-Fahrenheit-per-century basis...

X̄ = 4.25, S = 26.5, S/
√
n = 0.35

Confidence interval...
µ = 4.25± 0.69
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Local Climate Data – Forty Year Differences
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Temperature Diff x  2.5

n = 5699
√
n ≈ 75

k = 2775 (n + 1)/2 = 2850 n− k + 1 = 2925

On a degrees-Fahrenheit-per-century basis...

X(2775) = 2.75, X(2850) = 3.50, X(2925) = 4.50

Confidence interval...
η ∈ [2.75, 4.50]
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Local Climate Data – Forty Year Differences

Close up view
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NOTE: Precision in original data is only to one decimal place.
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Ten-Day Averages of Forty Year Differences

−30 −20 −10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for Forty−Year Diffs

Temperature Diff x  2.5

n = 569
√
n ≈ 24

k = 261 (n + 1)/2 = 285 n− k + 1 = 309

On a degrees-Fahrenheit-per-century basis...

X(2775) = 1.875, X(2850) = 3.425, X(2925) = 4.925

Confidence interval...
η ∈ [1.8755, 4.925]
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Ten-Day Averages of Forty Year Differences

Close up view
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NOTE: Precision is improved but confidence interval has widened.
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Matlab Code
load -ascii '/Users/rvdb/ampl/nlmodels/LocalWarming/McGuireAFB/data/McGuireAFB.dat';
temp = McGuireAFB(:,2);

diffs = temp(1+40*365.25:end) - temp(1:end-40*365.25);

diffs = 2.5*diffs; % convert to 'per century'

[n m] = size(diffs);

xbar = mean(diffs)

stddev = std(diffs)

n

stddev/sqrt(n)

1.96*stddev/sqrt(n)

y = (1:n)/n;

tempdiffssorted = sort(diffs);

figure(6); % FortyYearDiffs2cdf.pdf

plot(tempdiffssorted,y,'b.');

title('Empirical CDF for Forty-Year Diffs');

xlabel('Temperature Diff x 2.5');

hold on;

n2 = round(n/2);

k = n2 - round(sqrt(n));

plot([-100 tempdiffssorted(n2) tempdiffssorted(n2)], [n2/n n2/n 0], 'k-')

plot([-100 tempdiffssorted(k) tempdiffssorted(k)], [k/n k/n 0], 'k-')

plot([-100 tempdiffssorted(n-k+1) tempdiffssorted(n-k+1)], [(n-k+1)/n (n-k+1)/n 0], 'k-')

hold off;

tempdiffssorted([k n2 n-k+1])

[k n2 n-k+1]

[k n2 n-k+1]/n

round(sqrt(n))
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Graphical Analyses of Data

Recall the original 55-years of daily average temperature data from McGuire AFB:
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Average Daily Temperatures at McGuire AFB

We have shown that 40-year differences in temperatures are, on average, significantly different
from zero.
Yet, no trend is evident in this display of the raw data.
Can we find better ways to summarize the data?
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Take a Closer Look

Here’s a plot showing the daily average temperatures for two years: 1960 (blue) and 2000
(red):
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The average temperature in these two years was:

1960 avg. temp = 52.91 2000 avg. temp = 53.20

Slightly warmer in year 2000, which is consistent with our earlier analyses.

Yet, note that winter of 2000 had an extended cold spell.

Moral: Weather extremes say little about average temperatures. 14



Box Plots

Years After 1955
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The red dashes show the median temperature for each year.

The blue boxes show the 25th and 75th percentiles of the temperatures.

The black dashed “whiskers” extend to the largest and smallest temperatures each year.

Here’s the Matlab code:

T = McGuireAFB(:,2); % temperatures are in the second column

TbyYear = reshape( T(1:55*365), 365, 55);

boxplot(TbyYear);
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One-Year Averages

Year
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T = McGuireAFB(:,2);

figure(6);

window = ones(365,1);

Tw = conv(T,window,'valid');

time = 1955+1/2 + (1:size(Tw))/365.25;

yearlytime = time(1:365:end)';

yearlytemp = Tw(1:365:end)/365;

plot(yearlytime,yearlytemp,'b');
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One-Year Averages Day-by-Day

Date
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T = McGuireAFB(:,2);

figure(8);

window = ones(365,1);

Tw = conv(T,window,'valid');

time = 1955+1/2 + (1:size(Tw))/365.25;

plot(time(1:end),Tw(1:end)/365);
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