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Least Squares (Recalling two slides from Chapter 4)

Suppose we know from some underlying fundamental principle (say physics for example) that
some parameter y is related linearly to another parameter x:

y = α + βx

but we don’t know α and β. We’d like to do experiments to determine them. A probabilistic
model of the experiment has X and Y as random variables. Let’s imagine we do the
experiment over and over many times and have a good sense of the joint distribution of X
and Y . We want to pick α and β so as to minimize

E(Y − α− βX)2

Again, we take derivatives and set them to zero. This time we have two derivatives:

∂

∂α
E(Y − α− βX)2 = E

(
∂

∂α
(Y − α− βX)2

)
= −2E(Y − α− βX) = −2(µY − α− βµX) = 0

and

∂

∂β
E(Y − α− βX)2 = E

(
∂

∂β
(Y − α− βX)2

)
= −2E

(
(Y − α− βX)X

)
= −2

(
E(XY )− αE(X)− βE(X2)

)
= 0
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Least Squares – Continued (Recalling two slides from Chapter 4)

We get two linear equations in two unknowns

α + βµX = µY

αµX + βE(X2) = E(XY )

Multiplying the first equation by µX and subtracting it from the second equation, we get

βE(X2)− βµ2
X = E(XY )− µXµY

This equation simplifies to

βσ2
X = σXY

and so

β =
σXY
σ2
X

= ρ
σY
σX

Finally, substituting this expression into the first equation, we get

α = µY − ρ
σY
σX
µX
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Regression (Here starts the new stuff)

As before, suppose that it is known (or believed) that there is a simple linear relation between
two measurable quantities x and y:

y = α + βx

Suppose further that x can be set with arbitrary precision but that y is measured with some
error. A statistical model for such as situation involves random variables:

Y = α + βx + ε

Here, ε and (therefore) Y are random variables.

Our aim is to derive estimates for α and β based on a sampling of size n.

We assume that x can be varied as we like in the sampling process. So, we have n samples
like this:

Yi = α + βxi + εi, i = 1, 2, . . . , n

We wish to choose the α and β that give the “best fit” to the sample. In other words, we
choose them so as to minimize∑

i

ε2i =
∑
i

(Yi − α− βxi)2
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Minimizing the Sum of Squares

To minimize, we take the derivatives with respect to α and β and set them to zero:

∂

∂α

∑
i

(Yi − α− βxi)2 =
∑
i

2 (Yi − α− βxi) (−1) = 0

∂

∂β

∑
i

(Yi − α− βxi)2 =
∑
i

2 (Yi − α− βxi) (−xi) = 0

Dividing both sides by −2n, these equations simplify to

Y − α− βx = 0

xY − αx− βx2 = 0

where

x =
1

n

∑
i

xi, Y =
1

n

∑
i

Yi, xY =
1

n

∑
i

xiYi, x2 =
1

n

∑
i

x2
i

This is two equations in two unknowns. Multiplying the first equation by x and subtracting
that from the second equation, we can solve for β and, knowing β, we can use the first
equation to solve for α:

β̂ =
xY − x Y
x2 − x2

, α̂ = Y − β̂x
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Mean of α̂ and β̂

Recalling that β̂ = xY−x Y
x2−x2 and α̂ = Y − β̂x

We first compute the expected value of β̂:

E(β̂) =
E(xY )− x E(Y )

x2 − x2

=
E( 1

n

∑
i xiYi)− x E( 1

n

∑
i Yi)

x2 − x2

=
1
n

∑
i xiE(Yi)− x 1

n

∑
i E(Yi)

x2 − x2

=
1
n

∑
i xi(α + βxi)− x 1

n

∑
i(α + βxi)

x2 − x2

= β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Next, we compute the expected value
of α̂:

E(α̂) = E(Y )− E(β̂) x

= E(
1

n

∑
i

Yi)− β x

=
1

n

∑
i

E(Yi)− β x

=
1

n

∑
i

(α + βxi)− β x

= α

The estimators are unbiased!
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Variance of α̂ and β̂

Again, recall that β̂ = xY−x Y
x2−x2 and α̂ = Y − β̂x

To compute the variance of α̂ and β̂, we need these computations:

xY − x Y =
1

n

∑
i

xiYi − x
1

n

∑
i

Yi =
1

n

∑
i

(xi − x)Yi

var
(
xY − x Y

)
= var

 1

n

∑
i

(xi − x)Yi

 =
1

n2

∑
i

(xi − x)2 σ2

α̂ = Y − xY − x Y
x2 − x2

x =
x2 Y − x xY
x2 − x2

=

1
n

∑
i

(
x2 − x xi

)
Yi

x2 − x2

Using these formulas, we get

var(β̂) =
var(xY − xY )(
x2 − x2

)2 =
σ2

n

1
n

∑
i(xi − x)2(
x2 − x2

)2 =
σ2

n

1

x2 − x2

and

var(α̂) =

1
n2

∑
i

(
x2 − x xi

)2
σ2(

x2 − x2
)2 =

σ2

n

1
n

∑
i

(
x2 − x xi

)2
(
x2 − x2

)2 = · · · = σ2

n

x2

x2 − x2
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Confidence Intervals for α and β

Subtracting the mean and dividing by the standard deviation, we see that the random variables

α̂− α√
var(α̂)

=
α̂− α

σ√
n

√
x2√

x2−x2

and
β̂ − β√
var(β̂)

=
β̂ − β

σ√
n

1√
x2−x2

have mean zero and variance one. If the εi’s are Normally distributed (with mean 0 and
variance σ2), then the above random variables are standard Normal random variables.

We don’t know σ2. It can be shown that

S2 =
1

n− 2

∑
i

(
Yi − α̂− β̂xi

)2
is an unbiased estimate of σ2 and the corresponding normalized rv’s are approximately nor-
mally distributed (t-distribution with n− 2 degrees of freedom if n is small).

Putting this all together, we get the following 95% confidence intervals for α̂ and β̂:

α ∈ α̂± 1.96
S√
n

√
x2√

x2 − x2
β ∈ β̂ ± 1.96

S√
n

1√
x2 − x2

If n is small (less, say, that 30) then replace 1.96 with tn−2(0.025). 7



Back to Temp vs. Time at McGuire AFB

Recall from Chapter 10 our plot of one-year averages:

Year
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

T
e
m

p
e
ra

tu
re

 (
F

)

51

52

53

54

55

56

57

58

This is n = 55 data points where “x” is the year (with, say, year 0 being 1955) and “y” is
average temperature for year x.
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Temp vs. Time – Regression Fit

Year
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

T
e

m
p

e
ra

tu
re

 (
F

)

51

52

53

54

55

56

57

58

α̂ = 52.81± 0.53

β̂ = 0.0370± 0.0170

Linear Regression

T = McGuireAFB(:,2);

[n m] = size(T);

T = T(1: 365*floor(n/365));

T = reshape(T, 365, floor(n/365));

y = mean(T)';

[n m] = size(y);

x = (0:(n-1))';

xbar = sum(x)/n;

ybar = sum(y)/n;

xybar = sum(x.*y)/n;

x2bar = sum(x.*x)/n;

beta = (xybar - xbar*ybar)/(x2bar - xbar^2)

alpha = ybar - beta*xbar

plot( 1955+x, y,'b-', 1955+x, y,'r+', ...

[1955 2010], [alpha alpha+beta*(2010-1955)], 'g-');

% Code for confidence interval...

eps = y - alpha - beta*x;

S = sqrt(sum(eps.^2)/(n-2));

alpha_width = 1.96 * (S/sqrt(n)) ...

* (sqrt(x2bar))/(sqrt(x2bar-xbar^2));

beta_width = 1.96 * ...

(S/sqrt(n)) /(sqrt(x2bar-xbar^2));
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Temp vs. Time – Epsilons

Year
1960 1970 1980 1990 2000 2010

T
e

m
p

e
ra

tu
re

 (
F

)

51

52

53

54

55

56

57

58

α̂ = 52.81± 0.53

β̂ = 0.0370± 0.0170

Linear Regression
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Temp vs. Time – Regression Fit – Goodness of Fit

Here we plot the empirical cdf for the εi’s on top of the cdf of a normal distribution with the
same mean and variance:
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Temp vs. Time – Regression Fit – Rolling Average

Days
×10

4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
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m
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e
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re

 (
F

)

50

51

52

53

54

55

56

57

58

59

α̂ = 52.72

365 β̂ = 0.0390

Linear Regression

T = McGuireAFB(:,2);

window = ones(365,1)/365;

y = conv(T,window,'valid');

[n m] = size(y);

x = (0:(n-1))';

xbar = sum(x)/n;

ybar = sum(y)/n;

xybar = sum(x.*y)/n;

x2bar = sum(x.*x)/n;

betahat = (xybar - xbar*ybar)/(x2bar - xbar^2)

alphahat = ybar - betahat*xbar

plot(x,y,'b-', [x(1) x(end)], [alphahat alphahat+betahat*365*(2010-1955)], 'g');

Note: Confidence interval not computed because εi’s are not independent.
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Temp vs. Time – Multiple Linear Regression

Let’s take into account the seasonal oscillations:

yi = β1 + β2xi + β3 cos(2πxi/365.25) + β4 sin(2πxi/365.25) + εi i = 1, 2, . . . , n

Again, we look for values of the parameters that minimize the sum of the squares of the εi’s.

This time, however, we have to set four derivatives equal to zero. That’s four equations in
four unknowns. Not fun. Fortunately, Matlab provides a tool precisely for this purpose. We
put the temperatures in a column vector y,

y =


y1
y2
...
yn

 ,
and we put the numbers that multiply the βj’s into a matrix X with n rows and 4 columns

X =


1 x1 cos(2πx1/365.25) sin(2πx1/365.25)
1 x2 cos(2πx2/365.25) sin(2πx2/365.25)
... ... ... ...
1 xn cos(2πxn/365.25) sin(2πxn/365.25)

 .
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Multiple Linear Regression – Continued

It may look complicated but y and X are just a vector and a matrix of numbers. Here’s a
few entries from y and X :

y =



37.6
43.2
40.0
42.2
30.0
36.3
...

81.2
82.0
75.2
70.5


X =



1 1 0.9999 0.0172
1 2 0.9994 0.0344
1 3 0.9987 0.0516
1 4 0.9976 0.0688
1 5 0.9963 0.0859
1 6 0.9947 0.1030
...

...
...

...
1 20311 −0.7765 −0.6301
1 20312 −0.7656 −0.6433
1 20313 −0.7544 −0.6564
1 20314 −0.7430 −0.6693


And, our statistical model can be written in this matrix notation:

y = Xβ + ε

where

β =


β1
β2
β3
β4


and ε is a long vector of “errors”.
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Multiple Linear Regression – Matlab

Linear least squares is so important that Matlab has made it especially easy to compute the
vector β that minimizes the sum of the squares of the ε’s:

β̂ = X\y

Here’s the full Matlab code used to make the plot on the following page:

load -ascii data/McGuireAFB.dat;

y = McGuireAFB(:,2);

[n m] = size(y);

% least squares regression

dt = (1:n)';

X = [ ones(n,1) dt cos(2*pi*dt/365.25) sin(2*pi*dt/365.25) ];

betahat = X\y

betahat(2)*356.25*100

plot( 1955+dt/365.25, y, 'b+', 1955+dt/365.25, X*betahat, 'r-');
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Multiple Linear Regression – Output

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
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90

The numerical answers are:

β̂1 = 52.7400, β̂2 = 0.00010618, β̂3 = −20.2127, β̂4 = −8.1828

The linear trend is encoded in β̂2.

The value shown above is in degrees Fahrenheit per day.

To convert to degrees per century, we need to multiply by 100× 365.25.

We get

linear trend = 100× 365.25× β̂2 = 3.8781◦F/century
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Confidence Intervals via Bootstrap

It’s possible, but tedious, to derive formulas for the variances (and covariances) of the β̂i’s
in the climate model.
An alternate method for producing confidence intervals is called Bootstrap.
The idea is as follows.
When n is large (say, n = 20,314, as in the climate model), then we can use the computed
regression coefficients to produce a large empirical pool of ε’s:

ε̂i = yi −
(
β̂1 + β̂2xi + β̂3 cos(2πxi/365.25) + β̂4 sin(2πxi/365.25)

)
In other words,

ε̂ = y −Xβ̂
By sampling (with replacement) from this pool of ε̂i’s, we can artificially generate new data
sets that are statistically similar to the original one:

ỹ = Xβ̂ + ε̃

(here, ε̃i is one of the ε̂j’s drawn at random from the pool of such epsilons). Using this new
data set, we can compute new values for the estimators:

β̃ = X\ỹ
17



Confidence Intervals via Bootstrap – Continued

We can do this over and over again to generate a large sample of new estimators. The
expected value of these new estimators is unchanged from the original. But, they won’t be
all the same and therefore we can use them to compute an empirical standard deviation and
use that to compute confidence intervals.

The Matlab code to do this bootstrap is rather straightforward:

eps = y - X*beta;

beta_new = zeros(4,100);

indices = randi(n,n); % an nxn matrix of random numbers between 1 and n

for i=1:100

y_new = X*beta + eps(indices(:,i));

beta_new(:,i) = X\y_new;

end

betahat = mean(beta_new');

betahatstd = std(beta_new');

36525 * betahat(2)

36525 * 1.96*betahatstd(2)

And, the answer is...

100× 365.25× β2 = 3.8662± 0.6635◦F/century
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Goodness of Fit

As before, we plot the empirical cdf for the εi’s on top of the cdf of a normal distribution
with the same mean and variance:
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A Few Final Remarks on Climate Data

The climate data for McGuire AFB can be downloaded from here...

http://www.princeton.edu/~rvdb/ampl/nlmodels/LocalWarming/McGuireAFB/data/McGuireAFB.txt

Here is a published paper that describes the data and its analysis in some detail...

http://www.princeton.edu/~rvdb/tex/LocalWarming/LocalWarmingSIREVrev.pdf
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Had Linear Algebra Been A Prereq...

The course is over. What follows is a short advertisement for ORF 405.

21



Had Linear Algebra Been A Prereq...

Regression model: y = Xβ + ε.
Find β that minimizes sum of squared errors:

β̂ = argminβ‖y −Xβ‖2 = argminβ(y −Xβ)T (y −Xβ) = argminβf (β)

where

f (β) = yTy − βTXTy − yTXβ + βTXTXβ.

Take the gradient with respect to β and equate to zero:

XTXβ̂ = XTy =⇒ β̂ = (XTX)−1XTy

The estimator is unbiased:

E(β̂) = (XTX)−1XTE(y) = (XTX)−1XTXβ = β

The covariances among all of the coefficients is also easy to compute:

Cov(β̂) = E(β̂β̂T )− ββT = E
(
(XTX)−1XTyyTX(XTX)−1

)
− ββT

= E
(
(XTX)−1XT (Xβ + ε)(Xβ + ε)TX(XTX)−1

)
− ββT

= σ2(XTX)−1
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The 2-Dimensional Case

Suppose that

β =

[
β0
β1

]
and X =

[
e x

]
where e denotes a column vector of all ones and x is a column vector containing the xi’s.

In this case,

XTX =

[
eT

xT

] [
e x

]
=

[
n eTx
eTx xTx

]
Hence

σ2(XTX)−1 = σ2

[
xTx −eTx
−eTx n

]
1

nxTx− (eTx)2

= σ2

[
nx2 −nx
−nx n

]
1

n2x2 − (nx)2

=
σ2

n

[
x2 −x
−x 1

]
1

x2 − (x)2

The entries on the diagonal are consistent with the formulas we derived before. 23



Back To The k-Dimensional Case

Recall:

y = Xβ + ε, E(ε) = 0

β̂ = (XTX)−1XTy, E(β̂) = β

Let

ε̂ = y −Xβ̂ = y −X(XTX)−1XTy = Py = P (Xβ + ε)

where

P = I −X(XTX)−1XT = UUT

where U is a n×(n−k) orthonormal matrix (UTU = I). Note that PX = 0 and P TP = P .

We compute...

E
(
‖ε̂‖2

)
= E

(
P (Xβ + ε)

)T (
P (Xβ + ε)

)
= βTXTPXβ + EεTP TPε

= EεTPε = EεTUUTε = · · · = (n− k)σ2

Therefore, Sn =
1

n−k‖ε̂‖
2 = 1

n−k‖y −Xβ̂‖
2 is an unbiased estimator of σ2. 24


