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Random Variable: A real-valued function on €2 is called a random variable.
We use capital letters such as X for random variables.
The notation X < x is shorthand for the event {w € | X(w) < z}.

Cumulative Distribution Function (cdf):

F(zr)=P(X <x), forall —0o < x < 0.

Probability Mass Function (aka Frequency Function): This only works for random variables
that take on a discrete set of values, x, zo, .. .:

plr;)) = P(X =x;), foralli=1,2,....

Independence: Two random variables, X and Y, are independent if every event expressible
in terms of X alone is independent of every other event expressible in terms of Y alone.
In particular,
P(X <z and Y <y)=PX <z) P(Y <y).

If the random variables are discrete, then

P(X=x; and Y =y,;) = P(X =ux;) P(Y =vy;).



Example of a CDF — Discrete Case

Cumulative Distribution Function for Binonial
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Example of a CDF — Continuous Case

Cumulative Distribution Function for Normal(0,1)
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Discrete Distributions



Bernoulli Distribution

A Bernoulli random variable X takes on just two values: zero or one.

At the risk of confusing notations, we usually let

and

Bernoulli random variables are closely associated with “events”. Let A C () be some event
in some abstract sample space ). Let

1 forwe A
7V 0 forweg A

Such “indicator” random variables are often denoted by
X(w) = La(w)
which means “one if event A happens, zero otherwise”.

Bernoulli random variables often represent “success” vs. “failure” of an experiment.



Binomial Distribution

An experiment is performed n times.
Each time the experiment is “performed” is completely independent of each other time.

We assume that the experiment is a “success’ with probability p and a “failure” with prob-
ability g = 1 —p (i.e., each experiment is described by a Bernoulli random variable, say

).
Let X denote the number of successes (i.e., X = ZY;)
j=1

The random variable X has a binomial distribution:



Geometric Distribution

Again, we consider a sequence of independent Bernoulli trials.
In this case, there is no upper bound on how many trials will be performed.
Let X denote the number of trials that must be performed until a “success” occurs.

Such a random variable has a geometric distribution:

p(k)=P(X =k)=p(1l —p) ! =pg", fork=1,2,....

Sanity check: the probabilities should sum to one...

k) = hl ko PPy YES!
;M) ;pq pkz:;q i

Geometric series. Geometric random variable. A coincidence? No!



Negative Binomial Distribution

Same set up as before. But, now let X denote the number of trials required until the r-th
success (where 7 is some given integer).

The event {X = k} happens when in the first k£ — 1 trials there were exactly r — 1 successes
and on the k-th trial there was also a success.

Hence,

r—1 r—1

k—1 k—1
pk)=P(X =k)= ( )pr(l — )i = ( )prq’“", fork=mrr+1,....

Sanity check: the probabilities should sum to one...

- < (k-1
k) = T === Details left t der!
;M) Z(T_1>pq etails left to reader

k=r



Poisson Distribution

Start with a Binomial distribution with very large n and very small p.
Let A = pn.

Let n — oo and p — 0 in such a way that A\ remains constant.

The limiting distribution is called the Poisson Distribution:

VAWNRY A\
o= i) () ()
onn=1)---n—Fk+1) [A ' A\ A\
et (o oy (2

1 | k41 A\ A\ "
= 11m—n<n_) (n— +>)\k ] —— ] ——
n—oo k! nk n n

Sanity check: the probabilities should sum to one...

Z p(k Z =1 Yes!

It is fair to say that thls P0|sson dlstrlbutlon is the most important of all discrete distributions.
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Matlab Code

k = 0:20;

lambda = 10;

p = exp(-lambda) * lambda."k ./ factorial(k) ;
figure(6);

plot(k,p, 'b*');

x1im([-1 20]);

xlabel('k');

ylabel('p(k)');

title('Poisson distribution with lambda = 10');
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Continuous Distributions

If Fi(z) = P(X < x) is a continuous function of z, then the random variable X is said to
have a continuous distribution.

Except in very special cases, a continuous increasing function is also differentiable.

Hence, we will assume that F'(x) has a derivative f(x).

And, since F(—oo) = 0, we can write

Fl)= [ s

The function f(z) is called the density function.
The area under the density function gives us probabilities:

pm<Xgm_ﬂm—ﬂ@_L%@mu

Note that .
PM:@:/meZO
Hence,

Pla< X <b)=Pa<X<b=Pla<X<b)=Pla<X<)D)
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Uniform Distribution

Pick a number “at random” from the interval [0, 1].
The density function is

1, 0<z<l1
flx) =
0, r<0or x>1
Uniform Distribution on [0,1] Uniform density on [0,1]
1 1
0.8 0.8
__ 086 0.6
= =
[T =
0.4 0.4
0.2 0.2
0 0
0 0.5 1 0 0.5 1

X X

If, instead of the interval [0, 1], we pick a number at random from the interval [a, b], then
the density function is

flx) =

{1/(b—a), a<z<b

0, r<a or x>b
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Exponential Distribution

Exponential random variables describe random temporal events such as “how long until the
next customer arrives?” We often use 1" instead of X for an exponential random variable.

The exponential density function is
e M t>0
) = { 0, t<0
The cumulative distribution function is easy to compute:

1 —e, t>0
0

F(t):/;f(u)du:{ | =0

Memorylessness:

PT>t+s and T'>5)  P(T >t+s)

PT>t+s|T>s) =

P(T > s) ~ P(T > s)
6—)\(t+s)
= = e_At
e—)\s
= P(T >t)
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Gamma Distribution

A Gamma random variable is often used for a generic example of a nonnegative random

variable. lts density function depends on two (positive) parameters, n and A:

_ )\n n—1_—M\t

Note: Gamma with n = 1 is the same as exponential.

(A=1)

Gamma Densities
T
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Normal (aka Gaussian) Distribution

A Normal random variable is often used as a generic symmetric random variable; i.e., the
bell-shaped curve. lts density function depends on two parameters, 1 and o

]_ 2 2
flz) = 2—6_(“’_’”‘) /207, —00 < T < 00
o

Parameter (1 is called the mean and parameter o is called the standard deviation.
Note: the density peaks at x = i and its “spread” increases with o.

Normal Densities
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Matlab Code

dx = 0.1;

x = (-50:50)*dx;

mu = 2;

sigma = 1;

f = (1/(sqrt(2*pi)*sigma))*exp(-(x-mu) . 2/ (2*xsigma~2));
sum (f) *xdx

plot(x,f,'b-"');
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Functions of a Random Variable

Suppose that X ~ N(u,o?).
What's the distribution of Y = a X + b7
Suppose (for convenience) that a > 0.

It's best to work with cdf's:

Fy(y):P(ng):P(aX+bgy):P<X§y_b> — Fy (y_b).

To find the density, we differentiate using the chain rule...

R o e e

dy dy a a a~/2mo
1  (y—b—ap)?
— e 227
2maoc

From this last expression, we see that Y ~ N(au + b, a*c?).
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Velocity /Energy

Suppose we live in a one-dimensional world (higher dimensions will come later) and that a
certain particle has mass m and a random velocity V' ~ N(0, o%).

Find the distribution of its energy: E = 3mV>

First, compute the cdf:

Fylz) = P(E <) =P (mV*/2 <) :P(—WSV§W>
8-l

Differentiating, we compute the density:

@) = |2t (n(@) +fv(—\/W)> _ \/%x‘mfv(\/m)

= zx_m;e_#f <= Gamma w/ params o = 1/2, A = 1/mo?
m 2mo
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Simulation (Proposition 2.3.D)

Let U be a random variable that's uniform on [0, 1].
Let F'(x) be a cumulative distribution function.
Because I is increasing, it has an inverse I 1.

Let X = F}(U).

Show that X is a random variable whose cdf if F(z).

Compute:

If we want X to be exponential, then F"~'(u) = —In(1 —u)/\. We can use this to generate
random exponential random variables from random uniformly distributed random variables.
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