ORF 245 Fundamentals of Statistics
 Chapter 2
 Random Variables

Robert Vanderbei

Fall 2014

Slides last edited on September 22, 2014

Definitions

Random Variable: A real-valued function on Ω is called a random variable.
We use capital letters such as X for random variables.
The notation $X \leq x$ is shorthand for the event $\{\omega \in \Omega \mid X(\omega) \leq x\}$.
Cumulative Distribution Function (cdf):

$$
F(x)=P(X \leq x), \text { for all }-\infty<x<\infty
$$

Probability Mass Function (aka Frequency Function): This only works for random variables that take on a discrete set of values, x_{1}, x_{2}, \ldots :

$$
p\left(x_{i}\right)=P\left(X=x_{i}\right), \text { for all } i=1,2, \ldots .
$$

Independence: Two random variables, X and Y, are independent if every event expressible in terms of X alone is independent of every other event expressible in terms of Y alone. In particular,

$$
P(X \leq x \text { and } Y \leq y)=P(X \leq x) P(Y \leq y)
$$

If the random variables are discrete, then

$$
P\left(X=x_{i} \text { and } Y=y_{j}\right)=P\left(X=x_{i}\right) P\left(Y=y_{j}\right)
$$

Example of a CDF - Discrete Case

Example of a CDF - Discrete Case

Example of a CDF - Continuous Case

Cumulative Distribution Function for $\operatorname{Normal}(0,1)$

Discrete Distributions

Bernoulli Distribution

A Bernoulli random variable X takes on just two values: zero or one.
At the risk of confusing notations, we usually let

$$
p=P(X=1)
$$

and

$$
q=P(X=0)=1-p .
$$

Bernoulli random variables are closely associated with "events". Let $A \subset \Omega$ be some event in some abstract sample space Ω. Let

$$
X(\omega)= \begin{cases}1 & \text { for } \omega \in A \\ 0 & \text { for } \omega \notin A\end{cases}
$$

Such "indicator" random variables are often denoted by

$$
X(\omega)=1_{A}(\omega)
$$

which means "one if event A happens, zero otherwise".
Bernoulli random variables often represent "success" vs. "failure" of an experiment.

Binomial Distribution

An experiment is performed n times.

Each time the experiment is "performed" is completely independent of each other time.

We assume that the experiment is a "success" with probability p and a "failure" with probability $q=1-p$ (i.e., each experiment is described by a Bernoulli random variable, say $\left.Y_{j}\right)$.

Let X denote the number of successes (i.e., $X=\sum_{j=1}^{n} Y_{j}$).

The random variable X has a binomial distribution:

$$
p(k)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{n}{k} p^{k} q^{n-k} .
$$

Geometric Distribution

Again, we consider a sequence of independent Bernoulli trials.
In this case, there is no upper bound on how many trials will be performed.

Let X denote the number of trials that must be performed until a "success" occurs.
Such a random variable has a geometric distribution:

$$
p(k)=P(X=k)=p(1-p)^{k-1}=p q^{k-1}, \quad \text { for } k=1,2, \ldots
$$

Sanity check: the probabilities should sum to one...

$$
\sum_{k=1}^{\infty} p(k)=\sum_{k=1}^{\infty} p q^{k-1}=p \sum_{k=0}^{\infty} q^{k}=\frac{p}{1-q}=\frac{p}{p}=1
$$

Geometric series. Geometric random variable. A coincidence? No!

Negative Binomial Distribution

Same set up as before. But, now let X denote the number of trials required until the r-th success (where r is some given integer).

The event $\{X=k\}$ happens when in the first $k-1$ trials there were exactly $r-1$ successes and on the k-th trial there was also a success.

Hence,

$$
p(k)=P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}=\binom{k-1}{r-1} p^{r} q^{k-r}, \quad \text { for } k=r, r+1, \ldots .
$$

Sanity check: the probabilities should sum to one...

$$
\sum_{k=r}^{\infty} p(k)=\sum_{k=r}^{\infty}\binom{k-1}{r-1} p^{r} q^{k-r}=\cdots==1 \quad \text { Details left to reader! }
$$

Poisson Distribution

Start with a Binomial distribution with very large n and very small p.
Let $\lambda=p n$.
Let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that λ remains constant.
The limiting distribution is called the Poisson Distribution:

$$
\begin{aligned}
p(k) & =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\lim _{n \rightarrow \infty} \frac{1}{k!} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \lambda^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned}
$$

Sanity check: the probabilities should sum to one...

$$
\sum_{k=0}^{\infty} p(k)=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1 \quad \text { Yes! }
$$

It is fair to say that this Poisson distribution is the most important of all discrete distributions.

Poisson distribution with lambda $=0.1$

Poisson distribution with lambda $=5$

Poisson distribution with lambda $=1$

Matlab Code

```
k = 0:20;
lambda = 10;
p = exp(-lambda) * lambda.^k ./ factorial(k) ;
figure(6);
plot(k,p,'b*');
xlim([-1 20]);
xlabel('k');
ylabel('p(k)');
title('Poisson distribution with lambda = 10');
```


Continuous Distributions

If $F(x)=P(X \leq x)$ is a continuous function of x, then the random variable X is said to have a continuous distribution.
Except in very special cases, a continuous increasing function is also differentiable. Hence, we will assume that $F(x)$ has a derivative $f(x)$.
And, since $F(-\infty)=0$, we can write

$$
F(x)=\int_{-\infty}^{x} f(\xi) d \xi
$$

The function $f(x)$ is called the density function.
The area under the density function gives us probabilities:

$$
P(a<X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

Note that

$$
P(X=c)=\int_{c}^{c} f(x) d x=0
$$

Hence,

$$
P(a<X<b)=P(a \leq X<b)=P(a<X \leq b)=P(a \leq X \leq b)
$$

Uniform Distribution

Pick a number "at random" from the interval $[0,1]$.
The density function is

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & x<0 \text { or } x>1\end{cases}
$$

If, instead of the interval $[0,1]$, we pick a number at random from the interval $[a, b]$, then the density function is

$$
f(x)= \begin{cases}1 /(b-a), & a \leq x \leq b \\ 0, & x<a \text { or } x>b\end{cases}
$$

Exponential Distribution

Exponential random variables describe random temporal events such as "how long until the next customer arrives?" We often use T instead of X for an exponential random variable.
The exponential density function is

$$
f(t)= \begin{cases}\lambda e^{-\lambda t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

The cumulative distribution function is easy to compute:

$$
F(t)=\int_{-\infty}^{t} f(u) d u= \begin{cases}1-e^{-\lambda t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Memorylessness:

$$
\begin{aligned}
P(T>t+s \mid T>s) & =\frac{P(T>t+s \text { and } T>s)}{P(T>s)}=\frac{P(T>t+s)}{P(T>s)} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =P(T>t)
\end{aligned}
$$

Gamma Distribution

A Gamma random variable is often used for a generic example of a nonnegative random variable. Its density function depends on two (positive) parameters, n and λ :

$$
f(t)=\frac{\lambda^{n}}{(n-1)!} t^{n-1} e^{-\lambda t}, \quad t \geq 0
$$

Note: Gamma with $n=1$ is the same as exponential.

Normal (aka Gaussian) Distribution

A Normal random variable is often used as a generic symmetric random variable; i.e., the bell-shaped curve. Its density function depends on two parameters, μ and σ :

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}, \quad-\infty<x<\infty
$$

Parameter μ is called the mean and parameter σ is called the standard deviation. Note: the density peaks at $x=\mu$ and its "spread" increases with σ.

Matlab Code

```
dx = 0.1;
x = (-50:50)*dx;
mu = 2;
sigma = 1;
f = (1/(sqrt(2*pi)*sigma))*exp(-(x-mu).^2/(2*sigma^2));
sum(f)*dx
plot(x,f,'b-');
```


Functions of a Random Variable

Suppose that $X \sim N\left(\mu, \sigma^{2}\right)$.
What's the distribution of $Y=a X+b$?
Suppose (for convenience) that $a>0$.
It's best to work with cdf's:

$$
F_{Y}(y)=P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right) .
$$

To find the density, we differentiate using the chain rule...

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} F_{X}\left(\frac{y-b}{a}\right)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right)=\frac{1}{a} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(\frac{y-b-\mu)^{2}}{2 \sigma^{2}}\right.}{\sqrt{2 \pi} a \sigma} e^{-\frac{(y-b-a \mu)^{2}}{2 a^{2} \sigma^{2}}}} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

From this last expression, we see that $Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Velocity/Energy

Suppose we live in a one-dimensional world (higher dimensions will come later) and that a certain particle has mass m and a random velocity $V \sim N\left(0, \sigma^{2}\right)$.
Find the distribution of its energy: $E=\frac{1}{2} m V^{2}$
First, compute the cdf:

$$
\begin{aligned}
F_{E}(x) & =P(E \leq x)=P\left(m V^{2} / 2 \leq x\right)=P(-\sqrt{2 x / m} \leq V \leq \sqrt{2 x / m}) \\
& =F_{V}\left(\sqrt{\frac{2 x}{m}}\right)-F_{V}\left(-\sqrt{\frac{2 x}{m}}\right)
\end{aligned}
$$

Differentiating, we compute the density:

$$
\begin{aligned}
f_{E}(x) & =\sqrt{\frac{2}{m}} \frac{1}{2} x^{-1 / 2}\left(f_{V}(\sqrt{2 x / m})+f_{V}(-\sqrt{2 x / m})\right)=\sqrt{\frac{2}{m}} x^{-1 / 2} f_{V}(\sqrt{2 x / m}) \\
& =\sqrt{\frac{2}{m}} x^{-1 / 2} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x}{m \sigma^{2}}} \quad \Longleftarrow \text { Gamma w/ params } \alpha=1 / 2, \lambda=1 / m \sigma^{2}
\end{aligned}
$$

Simulation (Proposition 2.3.D)

Let U be a random variable that's uniform on $[0,1]$.
Let $F(x)$ be a cumulative distribution function.
Because F is increasing, it has an inverse F^{-1}.
Let $X=F^{-1}(U)$.
Show that X is a random variable whose cdf if $F(x)$.

Compute:

$$
P(X \leq x)=P\left(F^{-1}(U) \leq x\right)=P(U \leq F(x))=F(x)
$$

If we want X to be exponential, then $F^{-1}(u)=-\ln (1-u) / \lambda$. We can use this to generate random exponential random variables from random uniformly distributed random variables.

