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Definitions

Random Variable: A real-valued function on Ω is called a random variable.
We use capital letters such as X for random variables.
The notation X ≤ x is shorthand for the event {ω ∈ Ω | X(ω) ≤ x}.

Cumulative Distribution Function (cdf):

F (x) = P (X ≤ x), for all −∞ < x <∞.

Probability Mass Function (aka Frequency Function): This only works for random variables
that take on a discrete set of values, x1, x2, . . .:

p(xi) = P (X = xi), for all i = 1, 2, . . ..

Independence: Two random variables, X and Y , are independent if every event expressible
in terms of X alone is independent of every other event expressible in terms of Y alone.
In particular,

P (X ≤ x and Y ≤ y) = P (X ≤ x) P (Y ≤ y).

If the random variables are discrete, then

P (X = xi and Y = yj) = P (X = xi) P (Y = yj).
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Example of a CDF – Discrete Case
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Example of a CDF – Discrete Case

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Cumulative Distribution Function for Binonial

p(x4)	  

3



Example of a CDF – Continuous Case
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Discrete Distributions
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Bernoulli Distribution

A Bernoulli random variable X takes on just two values: zero or one.

At the risk of confusing notations, we usually let

p = P (X = 1)

and
q = P (X = 0) = 1− p.

Bernoulli random variables are closely associated with “events”. Let A ⊂ Ω be some event
in some abstract sample space Ω. Let

X(ω) =

{
1 for ω ∈ A
0 for ω 6∈ A

Such “indicator” random variables are often denoted by

X(ω) = 1A(ω)

which means “one if event A happens, zero otherwise”.

Bernoulli random variables often represent “success” vs. “failure” of an experiment.
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Binomial Distribution

An experiment is performed n times.

Each time the experiment is “performed” is completely independent of each other time.

We assume that the experiment is a “success” with probability p and a “failure” with prob-
ability q = 1 − p (i.e., each experiment is described by a Bernoulli random variable, say
Yj).

Let X denote the number of successes (i.e., X =
n∑
j=1

Yj).

The random variable X has a binomial distribution:

p(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k =

(
n

k

)
pkqn−k.

7



Geometric Distribution

Again, we consider a sequence of independent Bernoulli trials.

In this case, there is no upper bound on how many trials will be performed.

Let X denote the number of trials that must be performed until a “success” occurs.

Such a random variable has a geometric distribution:

p(k) = P (X = k) = p(1− p)k−1 = pqk−1, for k = 1, 2, . . ..

Sanity check: the probabilities should sum to one...

∞∑
k=1

p(k) =
∞∑
k=1

pqk−1 = p
∞∑
k=0

qk =
p

1− q
=
p

p
= 1 YES!

Geometric series. Geometric random variable. A coincidence? No!
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Negative Binomial Distribution

Same set up as before. But, now let X denote the number of trials required until the r-th
success (where r is some given integer).

The event {X = k} happens when in the first k− 1 trials there were exactly r− 1 successes
and on the k-th trial there was also a success.

Hence,

p(k) = P (X = k) =

(
k − 1

r − 1

)
pr(1− p)k−r =

(
k − 1

r − 1

)
prqk−r, for k = r, r + 1, . . ..

Sanity check: the probabilities should sum to one...

∞∑
k=r

p(k) =
∞∑
k=r

(
k − 1

r − 1

)
prqk−r = · · · == 1 Details left to reader!
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Poisson Distribution

Start with a Binomial distribution with very large n and very small p.
Let λ = pn.
Let n→∞ and p→ 0 in such a way that λ remains constant.
The limiting distribution is called the Poisson Distribution:

p(k) = lim
n→∞

(
n

k

)(
λ

n

)k(
1− λ

n

)n−k

= lim
n→∞

n(n− 1) · · · (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n (
1− λ

n

)−k

= lim
n→∞

1

k!

n(n− 1) · · · (n− k + 1)

nk
λk
(

1− λ

n

)n (
1− λ

n

)−k
=

λk

k!
e−λ

Sanity check: the probabilities should sum to one...

∞∑
k=0

p(k) = e−λ
∞∑
k=0

λk

k!
= e−λ eλ = 1 Yes!

It is fair to say that this Poisson distribution is the most important of all discrete distributions.
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Matlab Code

k = 0:20;
lambda = 10;
p = exp(-lambda) * lambda.^k ./ factorial(k) ;
figure(6);
plot(k,p,'b*');
xlim([-1 20]);
xlabel('k');
ylabel('p(k)');
title('Poisson distribution with lambda = 10');
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Continuous Distributions

If F (x) = P (X ≤ x) is a continuous function of x, then the random variable X is said to
have a continuous distribution.

Except in very special cases, a continuous increasing function is also differentiable.

Hence, we will assume that F (x) has a derivative f (x).

And, since F (−∞) = 0, we can write

F (x) =

∫ x

−∞
f (ξ)dξ.

The function f (x) is called the density function.

The area under the density function gives us probabilities:

P (a < X ≤ b) = F (b)− F (a) =

∫ b

a

f (x)dx.

Note that

P (X = c) =

∫ c

c

f (x)dx = 0.

Hence,

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b)
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Uniform Distribution

Pick a number “at random” from the interval [0, 1].
The density function is

f (x) =

{
1, 0 ≤ x ≤ 1

0, x < 0 or x > 1
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If, instead of the interval [0, 1], we pick a number at random from the interval [a, b], then
the density function is

f (x) =

{
1/(b− a), a ≤ x ≤ b

0, x < a or x > b
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Exponential Distribution

Exponential random variables describe random temporal events such as “how long until the
next customer arrives?” We often use T instead of X for an exponential random variable.

The exponential density function is

f (t) =

{
λe−λt, t ≥ 0
0, t < 0

The cumulative distribution function is easy to compute:

F (t) =

∫ t

−∞
f (u)du =

{
1− e−λt, t ≥ 0
0, t < 0

Memorylessness:

P (T > t + s | T > s) =
P (T > t + s and T > s)

P (T > s)
=

P (T > t + s)

P (T > s)

=
e−λ(t+s)

e−λs
= e−λt

= P (T > t)
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Gamma Distribution

A Gamma random variable is often used for a generic example of a nonnegative random
variable. Its density function depends on two (positive) parameters, n and λ:

f (t) =
λn

(n− 1)!
tn−1e−λt, t ≥ 0

Note: Gamma with n = 1 is the same as exponential.
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Normal (aka Gaussian) Distribution

A Normal random variable is often used as a generic symmetric random variable; i.e., the
bell-shaped curve. Its density function depends on two parameters, µ and σ:

f (x) =
1√
2πσ

e−(x−µ)
2/2σ2, −∞ < x <∞

Parameter µ is called the mean and parameter σ is called the standard deviation.

Note: the density peaks at x = µ and its “spread” increases with σ.
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Matlab Code

dx = 0.1;
x = (-50:50)*dx;
mu = 2;
sigma = 1;
f = (1/(sqrt(2*pi)*sigma))*exp(-(x-mu).^2/(2*sigma^2));
sum(f)*dx
plot(x,f,'b-');
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Functions of a Random Variable

Suppose that X ∼ N(µ, σ2).

What’s the distribution of Y = aX + b?

Suppose (for convenience) that a > 0.

It’s best to work with cdf’s:

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P

(
X ≤ y − b

a

)
= FX

(
y − b
a

)
.

To find the density, we differentiate using the chain rule...

fY (y) =
d

dy
FY (y) =

d

dy
FX

(
y − b
a

)
=

1

a
fX

(
y − b
a

)
=

1

a

1√
2πσ

e−
(y−ba −µ)

2

2σ2

=
1√

2πaσ
e−

(y−b−aµ)2
2a2σ2

From this last expression, we see that Y ∼ N(aµ + b, a2σ2).
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Velocity/Energy

Suppose we live in a one-dimensional world (higher dimensions will come later) and that a
certain particle has mass m and a random velocity V ∼ N(0, σ2).

Find the distribution of its energy: E = 1
2
mV 2

First, compute the cdf:

FE(x) = P (E ≤ x) = P
(
mV 2/2 ≤ x

)
= P

(
−
√

2x/m ≤ V ≤
√

2x/m

)
= FV

(√
2x

m

)
− FV

(
−
√

2x

m

)

Differentiating, we compute the density:

fE(x) =

√
2

m

1

2
x−1/2

(
fV

(√
2x/m

)
+ fV

(
−
√

2x/m

))
=

√
2

m
x−1/2fV

(√
2x/m

)
=

√
2

m
x−1/2

1√
2πσ

e−
x

mσ2 ⇐= Gamma w/ params α = 1/2, λ = 1/mσ2
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Simulation (Proposition 2.3.D)

Let U be a random variable that’s uniform on [0, 1].

Let F (x) be a cumulative distribution function.

Because F is increasing, it has an inverse F−1.

Let X = F−1(U).

Show that X is a random variable whose cdf if F (x).

Compute:

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

If we want X to be exponential, then F−1(u) = − ln(1−u)/λ. We can use this to generate
random exponential random variables from random uniformly distributed random variables.
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