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Introduction

Joint Cumulative Distribution Function (cdf):

F (x, y) = P (X ≤ x, Y ≤ y).

Probability that (X, Y ) belongs to a given rectangle:

P (x1 < X ≤ x2, y1 < Y ≤ y2) = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1)

Probability that (X, Y ) belongs to an infinitesimal rectangle:

P (x < X ≤ x + dx, y < Y ≤ y + dy)

= F (x + dx, y + dy)− F (x, y + dy)− F (x + dx, y) + F (x, y)

≈ ∂2F

∂x∂y
(x, y) dxdy

Joint Probability Density Function:

f (x, y) =
∂2F

∂x∂y
(x, y)

P ((X, Y ) ∈ A) =

∫∫
A

f (x, y)dydx
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Discrete Case

If X and Y are “independent”, then

RV Y
value y1 y2 y3 · · · yn

prob q1 q2 q3 · · · qn
x1 p1 p1q1 p1q2 p1q3 · · · p1qn
x2 p2 p2q1 p2q2 p2q3 · · · p2qn

X x3 p3 p3q1 p3q2 p3q3 · · · p3qn
... ... ... ...

xm pm pmq1 pmq2 pmq3 · · · pmqn

If they are not independent, then the situation can be more complicated.
For example, we can shuffle things a little bit...

RV Y
value y1 y2 y3 · · · yn

prob q1 q2 q3 · · · qn
x1 p1 p1q1 + ε p1q2 − ε p1q3 · · · p1qn
x2 p2 p2q1 p2q2 p2q3 · · · p2qn

X x3 p3 p3q1 − ε p3q2 + ε p3q3 · · · p3qn
... ... ... ...

xm pm pmq1 pmq2 pmq3 · · · pmqn
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Marginals

Given a joint cdf, F (x, y), for a pair of random variables X and Y , the distribution of X is
easy to find:

FX(x) = P (X ≤ x) = P (X ≤ x, Y <∞) = F (x,∞) =

∫ x

−∞

∫ ∞
−∞

f (u, y)dydu

And, the density function for X is then found by differentiating:

fX(x) =
d

dx
FX(x) =

∫ ∞
−∞

f (x, y)dy

In a similar way, we can find the density fY (y) associated with random variable Y .

These univariate densities are called marginal densities.

In the discrete case, they can be found by summing the entries in a column (or row):

pX(xi) =
∑
j

p(xi, yj)
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Example 3.2 E

A point is chosen at random from the disk of radius 1 centered at the origin of a coordinate
system.
Let (X, Y ) denote the rectangular coordinates of this random point.
Since the area of the disk is π, the density function must be

f (x, y) =

{
1
π
, if x2 + y2 ≤ 1

0, otherwise

Let R =
√
X2 + Y 2 denote the radial coordinate of the random point.

It is easy to compute the cdf for R:

FR(r) = P (R ≤ r) =
πr2

π
= r2, 0 ≤ r ≤ 1

The density function for R is therefore

fR(r) = 2r, 0 ≤ r ≤ 1

The marginal density of X is also easy to compute:

fX(x) =

∫ ∞
−∞

f (x, y)dy =

∫ √1−x2

−
√

1−x2

1

π
dy =

2

π

√
1− x2, −1 ≤ x ≤ 1
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Example 3.3 D

f (x, y) =

{
λ2e−λy, 0 ≤ x ≤ y

0, elsewhere

fX(x) =

∫ ∞
x

λ2e−λydy = λe−λx, x ≥ 0 ⇐= Exponential

fY (y) =

∫ y

0

λ2e−λydx = λ2ye−λy, y ≥ 0 ⇐= Gamma
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Independence

Random variables X1, X2, . . . , Xn are independent if

P (X1 ∈ A1, X2 ∈ A2, . . . Xn ∈ An) = P (X1 ∈ A1) P (X2 ∈ A2) · · · P (Xn ∈ An).

An equivalent definition is that the cdf factors into a product:

F (x1, x2, . . . , xn) = FX1
(x1) FX2

(x2) · · · FXn
(xn)

If each of the random variables has a density function, then it is also equivalent to say that
the joint density factors into a product:

f (x1, x2, . . . , xn) = fX1
(x1) fX2

(x2) · · · fXn
(xn)

If X and Y are independent, then h(X) and g(Y ) are independent for any pair of functions
h(·) and g(·).
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Conditional Distribution

Discrete Case: Let X and Y be a pair of discrete random variables.

The conditional probability that X = x given that Y = y is

pX|Y (x|y) = P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

pXY (x, y)

pY (y)

provided, of course, that pY (y) > 0. This probability is best left undefined if pY (y) = 0.
Holding y to be fixed and viewing pX|Y (x|y) as a function of x, this function is a
probability mass function since it is nonnegative and sums to one.
If X and Y are independent, then pX|Y (x|y) = pX(x).
A useful formula:

pX(x) =
∑
y

pXY (x, y) =
∑
y

pX|Y (x|y)pY (y)

Continuous Case: The conditional density is given by:

fX|Y (x|y) =
fXY (x, y)

fY (y)

Usefull formula:

fX(x) =

∫ ∞
−∞

fX|Y (x|y)fY (y)dy
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Example 3.5.2 A

Continuation of earlier example:

f (x, y) = λ2e−λy, 0 ≤ x ≤ y

fX(x) =

∫ ∞
x

λ2e−λydy = λe−λx, x ≥ 0

fY (y) =

∫ y

0

λ2e−λydy = λ2ye−λy, y ≥ 0

fY |X(y|x) =
λ2e−λy

λe−λx
= λe−λ(y−x), y ≥ x

fX|Y (x|y) =
λ2e−λy

λ2ye−λy
=

1

y
, 0 ≤ x ≤ y
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Bayesian Inference (Example 3.5.2 E)

Consider a coin tossing experiment. Suppose that we do not know the probability of tossing a
heads. Let Θ be a random variable representing this probability. The Bayesian philosophy is
to assume a prior distribution for the unknown parameter and then update the prior based on
observations. If we assume that we know nothing about Θ (not a reasonable assumption!),
then we might take as our prior the uniform distribution on [0, 1]:

fΘ(θ) = 1, 0 ≤ θ ≤ 1

Now, suppose we toss the coin n times and let X denote the number of heads. The
conditional distribution for X given that Θ = θ is binomial with parameters n and θ:

fX|Θ(x|θ) =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n

The joint distribution for X and Θ is gotten by simply multiplying:

fX,Θ(x, θ) = fX|Θ(x|θ)fΘ(θ) =

(
n

x

)
θx(1− θ)n−x, 0 ≤ θ ≤ 1, x = 0, 1, . . . , n
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Bayesian Inference (Example 3.5.2 E) – Continued

From this joint distribution, we can compute the marginal distribution for X by integrating:

fX(x) =

∫ 1

0

fX,Θ(x, θ)dθ =

(
n

x

)∫ 1

0

θx(1− θ)n−xdθ

This last integral can be computed using integration-by-parts (over and over).
Here’s what one gets

∫ 1

0

θx(1− θ)n−xdθ =
x!(n− x)!

(n + 1)!

Hence, the marginal distribution for X reduces to a very simple formula:

fX(x) =
1

n + 1
, x = 0, 1, . . . , n

From the joint distribution and the marginal distribution, we can compute the conditional
distribution of Θ given that X = x:

fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
= (n + 1)

(
n

x

)
θx(1− θ)n−x, 0 ≤ θ ≤ 1
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Bayesian Inference (Example 3.5.2 E) – Continued

The conditional density

fΘ|X(θ|x) = (n + 1)

(
n

x

)
θx(1− θ)n−x, 0 ≤ θ ≤ 1

is a bit hard to visualize. Some plots are shown on the next slide. But, it’s interesting first to
figure out where this function has its maximum (as that’s an indicator of where this density
is concentrated). So, we differentiate and set the derivative to zero:

d

dθ
fΘ|X(θ|x) = (n + 1)

(
n

x

)
d

dθ
θx(1− θ)n−x

= (n + 1)

(
n

x

)(
xθx−1(1− θ)n−x − θx(n− x)(1− θ)n−x−1

)
= 0

Dividing both sides by n + 1 and by
(
n
x

)
and by θx−1 and by (1− θ)n−x−1, we get

x(1− θ)− θ(n− x) = 0 =⇒ θ = x/n
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Bayesian Inference (Example 3.5.2 E) – Continued
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Distribution of a Sum: Z = X + Y

Discrete Case: Let X and Y be a pair of discrete random variables taking integer values.

Using the law of total probability, we get that

P (Z = z) =
∞∑

x=−∞
P (X = x, Z = z) =

∞∑
x=−∞

P (X = x, X + Y = z)

=
∞∑

x=−∞
P (X = x, x + Y = z) =

∞∑
x=−∞

P (X = x, Y = z − x)

Hence, the distribution of Z is

pZ(z) =
∞∑

x=−∞
p(x, z − x)

If X and Y are independent, then

pZ(z) =
∞∑

x=−∞
pX(x)pY (z − x)

A sum of this form is called a convolution.
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Distribution of a Sum: Z = X + Y

Continuous Case: We start by computing the cdf:

FZ(z) =

∫∫
{(x,y):x+y≤z}

f (x, y)dydx =

∫ ∞
−∞

∫ z−x

−∞
f (x, y)dydx

In the inner integral, make a change of variable from y to v = x + y and then reverse
the order of integration:

FZ(z) =

∫ ∞
−∞

∫ z

−∞
f (x, v − x)dvdx =

∫ z

−∞

∫ ∞
−∞

f (x, v − x)dxdv

Finally, differentiate to find the density:

fZ(z) =

∫ ∞
−∞

f (x, z − x)dx

Again, if X and Y are independent, the result is a convolution:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx
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Example 3.6.1 A

Let X and Y be independent exponential random variables with the same parameter λ.

Find the distribution of their sum: Z = X + Y .

The distribution of the sum is given by the convolution:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx

=

∫ z

0

λe−λx λe−λ(z−x) dx

= λ2

∫ z

0

e−λzdx

= λ2ze−λz ⇐= Gamma

NOTE: The sum of n independent exponential random variables with parameter λ is a random
variable with a Gamma distribution with parameters n and λ.
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Example 3.6.1 B

Let X and Y be independent standard normal random variables. That is, N(0, 1).

Find the distribution of the ratio: Z = Y/X .

FZ(z) = P (Y/X ≤ z) = P (Y ≤ zX, X ≥ 0) + P (Y ≥ zX, X < 0)

= P (Y ≤ zX, X ≥ 0) + P (−Y ≤ z(−X), −X ≥ 0)

= 2P (Y ≤ zX, X ≥ 0)

= 2

∫ ∞
0

∫ xz

−∞
fX(x)fY (y)dydx =

1

π

∫ ∞
0

∫ xz

−∞
e−x

2/2e−y
2/2dydx

Differentiating, we get

fZ(z) =
1

π

∫ ∞
0

e−x
2/2 e−(xz)2/2x dx =

1

π

∫ ∞
0

e−x
2(1+z2)/2 xdx

=
1

π

∫ ∞
0

e−u(1+z2) du =
1

π(1 + z2)
⇐= Cauchy
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Example 3.6.2 A

Let X and Y be a pair of independent standard normal random variables.

Find the joint distribution of the polar coordinates: R =
√
X2 + Y 2 and Θ = atan2(Y,X).

Let’s work infinitesmally:

fRΘ(r, θ)drdθ = P (r ≤ R ≤ r + dr, θ ≤ Θ ≤ θ + dθ)

= P ((X, Y ) ∈ A)

= fXY (r cos θ, r sin θ)rdrdθ

= fX(r cos θ) fY (r sin θ) rdrdθ

=
1√
2π
e−r

2 cos2(θ)/2 1√
2π
e−r

2 sin2(θ)/2 rdrdθ

=
1

2π
e−r

2(cos2 θ+sin2 θ)/2 rdrdθ

Hence,

fRΘ(r, θ) =
1

2π
re−r

2/2

θ+dθ	



θ	



r	
  

r+dr	
  

x	
  

y	
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Example 3.6.2 A – Continued

The joint density can be factored into a product of densities:

fRΘ(r, θ) =

(
1

2π

) (
re−r

2/2
)

= fΘ(θ) fR(r), −π ≤ θ ≤ π, r ≥ 0

Hence, R and Θ are independent random variables.

And, Θ is uniformly distributed on [−π, π].

The distribution of R is called the Rayleigh distribution.

Remark: A nonnegative random variable R has a Rayleigh distribution if and only if R2 has
an exponential distribution.
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The Rayleigh Distribution

The extra r factor in the Rayleigh density function

fR(r) = re−r
2/2 r ≥ 0

allows us to do the integral to find the cdf for R

FR(r) =

∫ r

0

fR(u)du =

∫ r

0

ue−u
2/2du

by making the obvious change of variables v = u2/2

FR(r) =

∫ r2/2

0

e−udu =
[
−e−u

]r2/2
0

= 1− e−r2/2
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Simulating Standard Normal Random Variables

The cdf for the Rayleigh distribution is easy to “invert”:

F−1
R (u) =

√
−2 ln(1− u)

Hence, if U is a uniform random variable on [0, 1], then

R =
√
−2 ln(1− U)

has a Rayleigh distribution. And, if V is a second uniform random variable on [−π, π], then

X = R cos(V ) and Y = R sin(V )

are a pair of independent standard normal random variables.
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Matlab

n = 500;
U = rand([n 1]); % doc rand

V = 2*pi*rand([n 1]) - pi;

R = sqrt(-2*log(1-U));

X = R.*cos(V);

Y = R.*sin(V);

figure(1); % plot (X,Y)

plot(X,Y,'b+');

axis equal;

xlim([-4 4]);

ylim([-4 4]);

xlabel('x');

ylabel('y');

title('Standard Normals in the Plane');

figure(2); % plot empirical cdf next to true cdf

Xsort = sort(X);

x = (-400:400)/100;

y = cdf('norm',x);

plot(Xsort,(1:n)/n,'r-');

hold on;

plot(x,y,'k-');

hold off;

xlabel('x');

ylabel('F(x)');

legend('Empirical CDF','\Phi(x)','Location','Northwest');

title('Cumulative Distribution Function');
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