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Definition

The expectation of a random variable is a measure of it’s “average value”.

Discrete Case:
E(X) =

∑
i

xip(xi)

Caveat: If it’s an infinite sum and the xi’s are both positive and negative, then the
sum can fail to converge. We restrict our attention to cases where the sum converges
absolutely: ∑

i

|xi|p(xi) <∞

Otherwise, we say that the expectation is undefined.

Continuous Case:

E(X) =

∫ ∞
−∞

xf (x)dx

Corresponding Caveat: If ∫ ∞
−∞
|x|f (x)dx =∞

we say that the expectation is undefined.
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Geometric Random Variable

Recall that a geometric random variable takes on positive integer values, 1, 2, . . ., and that

p(k) = P (X = k) = qk−1p

where q = 1− p.

We compute:

E(X) =
∞∑
k=1

kpqk−1 = p
∞∑
k=1

kqk−1 = p
∞∑
k=1

d

dq
qk

= p
d

dq

∞∑
k=1

qk = p
d

dq
q
∞∑
k=0

qk = p
d

dq

q

1− q

= p
(1− q)(1)− q(−1)

(1− q)2
= p

1

(1− q)2

=
1

p

(Isn’t calculus fun!)
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Poisson Random Variable

Recall that a Poisson random variable takes on nonnegative integer values, 0, 1, 2, . . ., and
that

p(k) = P (X = k) =
λk

k!
e−λ

where λ is some positive real number.

We compute:

E(X) =
∞∑
k=0

k
λk

k!
e−λ = λe−λ

∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
k=0

λk

k!
= λe−λeλ

= λ

We now see that λ is the mean.
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Exponential Random Variable

Recall that an exponential random variable is a continuous random variable with

f (x) = λe−λx, x ≥ 0,

where λ > 0 is a fixed parameter.

We compute:

E(X) =

∫ ∞
0

x λe−λx dx

=
1

λ

∫ ∞
0

u e−u du

=
1

λ

(the last integral being done using integration by parts).
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Normal Random Variable

Recall that a normal random variable is a continuous random variable with

f (x) =
1√
2πσ

e−(x−µ)
2/2σ2

We compute:

E(X) =

∫ ∞
−∞

x
1√
2πσ

e−(x−µ)
2/2σ2dx

=

∫ ∞
−∞

(u + µ)
1√
2πσ

e−u
2/2σ2du

=

∫ ∞
−∞

u
1√
2πσ

e−u
2/2σ2du + µ

∫ ∞
−∞

1√
2πσ

e−u
2/2σ2du

= 0 + µ 1

= µ

The expected value of X is the mean µ.
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Cauchy Random Variable

Recall that a Cauchy random variable is a continuous
random variable with

f (x) =
1

π(1 + x2)

We compute:∫ ∞
−∞
|x|f (x)dx =

∫ ∞
−∞
|x| 1

π(1 + x2)
dx = ∞
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Std. Normal

Cauchy

The Cauchy density is symmetric about the origin so it is tempting to say that the expectation
is zero. But, the expectation does not exist.

The Cauchy distribution is said to have fat tails.

Let X1, X2, . . . be independent random variables with the same distribution as X . Let
Sn =

∑n
k=1Xk. Usually, we expect that

Sn/n → E(X)

It’s not the case for Cauchy (see next slide).
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Empirical Average

n = 5000;

figure(1);

X=random('norm',sqrt(2),1,[1 n]);

S=cumsum(X)./(1:n);

plot((1:n),S,'k-');

xlabel('n');

ylabel('S_n/n');

title('S_n/n for Normal distribution');

figure(2);

U=random('unif',-pi/2,pi/2,[1 n]);

X=tan(U);

S=cumsum(X)./(1:n);

plot((1:n),S,'k-');

xlabel('n');

ylabel('S_n/n');

title('S_n/n for Cauchy distribution');
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Theorem 4.1.1 A

Let g(·) be some given function.

Discrete Case: E(g(X)) =
∑
xj

g(xj)p(xj)

Continuous Case: E(g(X)) =

∫ ∞
−∞

g(x)f (x)dx

Derivation (Discrete case): Let Y = g(X). Then

E(g(X)) = E(Y ) =
∑
i

yipY (yi)

Let Ai = {xj | g(xj) = yi}. Then,

pY (yi) =
∑
xj∈Ai

p(xj)

and so

E(Y ) =
∑
i

yi
∑
xj∈Ai

p(xj) =
∑
i

∑
xj∈Ai

yip(xj) =
∑
i

∑
xj∈Ai

g(xj)p(xj) =
∑
xj

g(xj)p(xj)

Note: Usually E(g(X)) 6= g(E(X)). 8



Theorem 4.1.1 B

Suppose that Y = g(X1, X2, . . . , Xn) for some given function g(·).

Discrete Case:
E(Y ) =

∑
x1,x2,...,xn

g(x1, x2, . . . , xn)p(x1, x2, . . . , xn)

Continuous Case:

E(Y ) =

∫∫
· · ·
∫
g(x1, x2, . . . xn)f (x1, x2, . . . xn)dxn · · · dx2dx1

Derivation: Same as before.
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Theorem 4.1.2 A

Theorem: E

a + n∑
i=1

biXi

 = a +
n∑
i=1

biE(Xi)

Proof: We give the proof for the continuous case with n = 2. Other cases are similar.

E(Y ) =

∫∫
(a + b1x1 + b2x2)f (x1, x2)dx1dx2

= a

∫∫
f (x1, x2)dx1dx2 + b1

∫∫
x1f (x1, x2)dx1dx2 + b2

∫∫
x2f (x1, x2)dx1dx2

= a + b1

∫
x1

(∫
f (x1, x2)dx2

)
dx1 + b2

∫
x2

(∫
f (x1, x2)dx1

)
dx2

= a + b1

∫
x1fX1

(x1)dx1 + b2

∫
x2fX2

(x2)dx2

= a + b1E(X1) + b2E(X2)

NOTE: In this class, an integral without limits is an integral from −∞ to ∞.
It’s not an indefinite integral.
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Example 4.1.2 A

Consider a binomial random variable Y representing the number of successes in n independent
trials where each trial has success probability p.

It’s expectation is defined in terms of the probability mass function as

E(Y ) =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

This sum is tricky to simplify.

Here’s an easier way. Let Xi denote the Bernoulli random variable that takes the value 1 if
the i-th trial is a success and 0 otherwise.

Then

Y =
n∑
i=1

Xi

and so

E(Y ) =
n∑
i=1

E(Xi) =
n∑
i=1

p = np
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Variance and Standard Deviation

Definition: The variance of a random variable X is defined as

σ2 := Var(X) := E
(
X − E(X)

)2
The standard deviation, denoted by σ, is simply the square root of the variance.

Theorem: If Y = a + bX , then Var(Y ) = b2 Var(X).

Proof:

E
(
Y − E(Y )

)2
= E

(
a + bX − E(a + bX)

)2
= E

(
a + bX − a− bE(X)

)2
= E

(
bX − bE(X)

)2
= b2 E

(
X − E(X)

)2
= b2 Var(X)
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Bernoulli Distribution

Recall that q = 1− p and
E(X) = 0q + 1p = p

Hence

Var(X) = E(X − E(X))2

= (0− p)2q + (1− p)2p

= p2q + q2p

= pq(p + q)

= pq

Important Note: EX2 = E(X2) 6= (E(X))2
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Normal Distribution

Recall that
E(X) = µ

Hence

Var(X) = E(X − µ)2

=
1√
2πσ

∫ ∞
−∞

(x− µ)2e−
(x−µ)2
2σ2 dx

Make a change of variables z = (x− µ)/σ to get

Var(X) =
σ2

√
2π

∫ ∞
−∞

z2e−
z2

2 dz

This last integral evaluates to
√
2π a fact that can be checked using integration by parts

with u = z and dv = “everything else”. Hence

Var(X) = σ2
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An Equivalent Alternate Formula for Variance

Var(X) = E(X2)− (E(X))2

Let µ denote the expected value of X : µ = E(X).

Var(X) = E(X − µ)2

= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2
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Poisson Distribution

Let X be a Poisson random variable with parameter λ.

Recall that

E(X) = λ

To compute the variance, we follow a slightly tricky path. First, we compute

E(X(X − 1)) =
∞∑
n=0

n(n− 1)
λn

n!
e−λ =

∞∑
n=2

λn

(n− 2)!
e−λ = λ2

∞∑
n=0

λn

n!
e−λ = λ2

Hence,

E(X2) = λ2 + E(X) = λ2 + λ

and so

Var(X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ
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Standard and Poors 500 – Daily Returns

Raw data: Rj, j = 1, 2, . . . , n
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Standard and Poors 500 – Daily Returns

µ = E(Ri) ≈
∑
j

Rj/n = 9.86× 10−4, σ2 = Var(Ri) ≈
∑
j

(Rj − µ)2/n = 0.0108
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Standard and Poors 500 – Value Over Time
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Standard and Poors 500 – Matlab Code

load -ascii 'sp500.txt'
[n m] = size(sp500);

R = sp500;

mu = sum(R)/n

sigma = std(R)

figure(1);

plot(R);

xlabel('Days from start');

ylabel('Return');

title('Real data from S&P500');

figure(2);

Rsort = sort(R);

x = (-400:400)/10000;

y = cdf('norm', x, mu, sigma);

plot(Rsort, (1:n)/n, 'r-'); hold on;

plot(x,y,'k-'); hold off;

xlabel('x');

ylabel('F(x)');

title('Cumulative Distribution Function for S&P500');

legend('S&P500', 'Normal(\mu,\sigma)');

figure(3);
P = cumprod(1+R);

plot(P,'r-'); hold on;

for i=1:4

RR = R(randi(n,[n 1]));

PP = cumprod(1+RR);

plot(PP,'k-');

end

xlabel('Days from start');

ylabel('Current Value');

title('Value of Investment over Time');

legend('S&P500', 'Simulated from Same Distribution');

hold off;
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Standard and Poors 500 – The Data

The data file is called sp500.txt.
It is 250 lines of plain text.
Each line contains one number Ri.
Here are the first 15 lines...

.033199973
-.00048403243
.022474383
-.0065553654
-.014074893
.019397096
-1.0780741e-05
-.0014122923
.0058298966
-.014425864
-.0039424103
-.014017057
-.015702278
-.010432392
.010223599
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Covariance

Given two random variables, X and Y , let µX = E(X) and µY = E(Y ).

The covariance between X and Y is defined as:

Cov(X, Y ) = E((X − µX)(Y − µY ))
= E(XY )− µXµY

Proof of equality.

E((X − µX)(Y − µY )) = E(XY −XµY − µXY + µXµY )

= E(XY )− µXµY − µXµY + µXµY
= E(XY )− µXµY

Comment: If X and Y are independent, then E(XY ) = E(X)E(Y ) and so Cov(X, Y ) = 0.
The converse is not true.
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Covariance/Variance of Linear Combinations

If U = a +
∑n

i=1 biXi and V = c +
∑m

j=1 djYj, then

Cov(U, V ) =
n∑
i=1

m∑
j=1

bidjCov(Xi, Yj)

If Xi’s are independent, then Cov(Xi, Xj) = 0 for i 6= j and so

Var

∑
i

Xi

 = Cov

∑
i

Xi,
∑
i

Xi


=
∑
i

Cov(Xi, Xi)

=
∑
i

Var(Xi)
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Variance of a Binomial RV

Recall our representation of a Binomial random variable Y as a sum of independent
Bernoulli’s:

Y =
n∑
i=1

Xi

From this we see that

Var(Y ) =
∑
i

Var(Xi) = np(1− p).
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Correlation Coefficient

The correlation coefficient between two random variables X and Y is denoted by ρ and
defined as

ρ =
Cov(X, Y )√
Var(X)Var(Y )

=
σXY
σXσY

Let’s talk about “units”. Suppose that X represents a random spatial length measured in
meters (m) and that Y representst a random time interval measured in seconds (s). Then,
the units of Cov(X, Y ) are meter-seconds, Var(X) is measured in meters-squared and Var(Y )
has units of seconds-squared. Hence, ρ is unitless—the units in the numerator cancel with
the units in the denominator.

One can show that
−1 ≤ ρ ≤ 1

always holds.
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Conditional Expectation

The following formulas seem self explanatory...

Discrete case:
E(Y | X = x) =

∑
y

ypY |X(y|x)

Continuous case:

E(Y | X = x) =

∫
yfY |X(y|x)dy

Arbitrary function of Y :

E(h(Y ) | X = x) =

∫
h(y)fY |X(y|x)dy
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Prediction

Let Y be a random variable. We’d like to give a single deterministic number to represent
“where” this random variable sits on the real line. The expected value, E(Y ) is one choice
that is quite reasonable if the distribution of Y is symmetric about this mean value. But,
many distributions are skewed and in such cases the expected value might not be the best
choice. The real question is: how do we quantify what we mean by best choice? One answer
to that question involves the mean squared error (MSE):

MSE(α) = E(Y − α)2

To find a good estimator, pick the value of α that minimizes the MSE. To find this minimizer,
we differentiate and set the derivative to zero:

d

dα
MSE(α) =

d

dα
E(Y − α)2 = E

(
d

dα
(Y − α)2

)
= E

(
2(Y − α)(−1)

)
Hence, we pick α such that

0 = E(α− Y ) = α− E(Y )

i.e.,
α = E(Y )

Conclusion: the mean minimizes the mean squared error.
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Least Squares

Suppose we know from some underlying fundamental principle (say physics for example) that
some parameter y is related linearly to another parameter x:

y = α + βx

but we don’t know α and β. We’d like to do experiments to determine them. A probabilistic
model of the experiment has X and Y as random variables. Let’s imagine we do the
experiment over and over many times and have a good sense of the joint distribution of X
and Y . We want to pick α and β so as to minimize

E(Y − α− βX)2

Again, we take derivatives and set them to zero. This time we have two derivatives:

∂

∂α
E(Y − α− βX)2 = E

(
∂

∂α
(Y − α− βX)2

)
= −2E(Y − α− βX) = −2(µY − α− βµX) = 0

and

∂

∂β
E(Y − α− βX)2 = E

(
∂

∂β
(Y − α− βX)2

)
= −2E

(
(Y − α− βX)X

)
= −2

(
E(XY )− αE(X)− βE(X2)

)
= 0
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Least Squares – Continued

We get two linear equations in two unknowns

α + βµX = µY

αµX + βE(X2) = E(XY )

Multiplying the first equation by µX and subtracting it from the second equation, we get

βE(X2)− βµ2
X = E(XY )− µXµY

This equation simplifies to

βσ2
X = σXY

and so

β =
σXY
σ2
X

= ρ
σY
σX

Finally, substituting this expression into the first equation, we get

α = µY − ρ
σY
σX
µX
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Regression to the Mean

Suppose that a large statistics class has two midterms. Let X denote the score that a random
student gets on the first midterm and let Y denote the same student’s score on the second
midterm. Based on prior use of these two exams, the instructor has figured out how to grade
them so that the average and variance of the scores are the same

µX = µY = µ, σX = σY = σ

But, those students who do well on the first midterm tend to do well on the second midterm,
which is reflected in the fact that ρ > 0. From the calculations on the previous slide, we can
estimate how a student will do on the second midterm based on his/her performance on the
first one. Our estimate, denoted Ŷ , is

Ŷ = µ− ρµ + ρX

We can rewrite this as
Ŷ − µ = ρ(X − µ)

In words, we expect the performance of the student on the second midterm to be closer by
a factor of ρ to the average than was his/her score on the first midterm. This is a famous
effect called regression to the mean.
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Moment Generating Function

We will skip the definition and details of Moment Generating functions.
However, we will cover some of the important examples of this section.
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Sum of Poissons

Let X and Y be independent Poisson random variables with parameter λ and µ, respectively.
Let Z = X + Y . Let’s compute the probability mass function:

P (Z = n) = P (X + Y = n) =
n∑
k=0

P (X = k, Y = n− k)

=
n∑
k=0

P (X = k) P (Y = n− k)

=
n∑
k=0

λk

k!
e−λ

µn−k

(n− k)!
e−µ = e−(λ+µ)

n∑
k=0

λk

k!

µn−k

(n− k)!

= e−(λ+µ)
1

n!

n∑
k=0

(
n

k

)
λkµn−k = e−(λ+µ)

(λ + µ)n

n!

Conclusion: The sum is Poisson with parameter λ+µ. The result can be extended to a sum
of any number of independent Poisson random variables:

Xk ∼ Poisson(λk) =⇒
∑
k

Xk ∼ Poisson

∑
k

λk
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Sum of Normals

Let X and Y be independent Normal(0,1) r.v.’s and Z = X + Y . Compute Z’s cdf:

P (Z ≤ z) = P (X + Y ≤ z) =

∫ ∞
−∞

f (x)P (Y ≤ z − x)dx

=
1

2π

∫ ∞
−∞

e−x
2/2

∫ z−x

−∞
e−y

2/2dydx

Differentiating, we compute the density function for Z:

fZ(z) =
1

2π

∫ ∞
−∞

e−x
2/2e−(z−x)

2/2dx =
1

2π

∫ ∞
−∞

e−x
2+xz−z2/2dx

=
1

2π

∫ ∞
−∞

e−(x−z/2)
2+z2/4−z2/2dx =

1

2π
e−z

2/4

∫ ∞
−∞

e−(x−z/2)
2

dx

=
1

2π
e−z

2/4

∫ ∞
−∞

e−x
2

dx =
1√

2π
√
2
e−z

2/4

Conclusion: The sum is Normal with mean 0 and variance 2. The result can be extended to
a sum of any number of independent Normal random variables:

Xk ∼ Normal(µk, σ
2
k) =⇒

∑
k

Xk ∼ Normal

∑
k

µk,
∑
k

σ2
k
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Sum of Gammas

Let X and Y be independent r.v.’s having Gamma distribution with parameters (n, λ) and
(1, λ), respectively, and let Z = X + Y . Compute Z’s cdf:

P (Z ≤ z) = P (X + Y ≤ z) =

∫ z

0

f (x)P (Y ≤ z − x)dx

=

∫ z

0

λn

(n− 1)!
xn−1e−λx

∫ z−x

0

λe−λy dy dx

Differentiating, we compute the density function for Z:

fZ(z) =

∫ z

0

λn

(n− 1)!
xn−1e−λxλe−λ(z−x) dx +

λn

(n− 1)!
zn−1e−λz

∫ z−z

0

λe−λy dy

=
λn+1

(n− 1)!
e−λz

∫ z

0

xn−1dx + 0

=
λn+1

n!
zne−λz

Conclusion: The sum is Gamma with parameters (n + 1, λ).

Induction: A Gamma random variable with parameters (n, λ) can always be interpreted as a
sum of n independent exponential r.v.’s with parameter λ.
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Approximate Methods

We will skip this section
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