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Law of Large Numbers

Let X1, X2, . . . , Xi, . . . be a sequence of independent identically distributed random variables
with mean µ and variance σ2. Let

X̄n =
1

n

n∑
i=1

Xi

Compute the mean and variance of X̄n:

E(X̄n) = E

1

n

n∑
i=1

Xi

 =
1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µ = µ

Var(X̄n) = Var

1

n

n∑
i=1

Xi

 =
1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

σ2 = σ2/n

The Law of Large Numbers says that

lim
n→∞

X̄n = µ

Technically speaking there are two versions of this theorem: the strong version and the weak
version. Such a distinction is important in more advanced classes. We’ll ignore it.
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Monte Carlo Integration

Suppose we want to integrate some function over some interval. For example, suppose that
the function is f (x) = 1/x and the interval is [1, 4]:

I =

∫ 4

1

1

x
dx

There are various methods. First choice would be to do an explicit calculation:

I =

∫ 4

1

1

x
dx = ln(4)− ln(1) = ln(4)

But, is this really “explicit”? What is the numerical value of ln(4)? Saying there is a button
for it on your calculator is not an acceptable answer. Someone at the company that made
your calculator had to code up an algorithm to do the computation.

In your calculus class, you learned how to approximate integrals using various methods of
discretization: the Midpoint Rule, the Trapezoidal Rule, Simpsons Rule, etc. Your calculator
uses one of these methods.
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Monte Carlo Integration – Continued

Here’s another method: generate independent uniformly distributed random variables,
X1, X2, . . . , Xn on [1, 4] and compute

In =
1

n

n∑
i=1

3

Xi

The answer is a random variable. But, as n tends to infinity, this random variable converges
to the mean value of 3/X :

In −→ E
(

3

X

)
=

∫ 4

1

3

x

1

3
dx =

∫ 4

1

1

x
dx

% Monte Carlo
n = 300;

X = random('unif', 1, 4, [1 n]);

I = (4-1)*sum(1./X)/n;

sprintf('%10.7f', I)

1.4554425

% Numerical Integration
x = ((101:400)-0.5)/100;

dx = 1/100;

I = sum(1./x)*dx;

sprintf('%10.7f', I)

1.3862905

% Matlab's Answer

I = log(4);

sprintf('%10.7f', I)

1.3862944

With n = 3,000,000, Monte Carlo gives 1.3862486 (five sig. figs.).

Conclusion: Monte Carlo is a method of last resort.
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Central Limit Theorem

Let X1, X2, . . . be a sequence of independent identically distributed (iid) random variables
having mean µ and variance σ2. Let

Sn =
n∑

i=1

Xi

We know that the expected value of a sum is the sum of the expected values and that the
variance of a sum of independent r.v.s’ is the sum of the variances. Hence,

E(Sn) = nµ and Var(Sn) = nσ2

Therefore, the random variable

Tn =
Sn − nµ√

n σ

has mean zero and variance one.
The Central Limit Theorem says that, as n goes to infinity

P (a ≤ Tn ≤ b) →
∫ b

a

1√
2π
e−x

2/2dx

In other words, for n large, Tn is approximately a N(0, 1) random variable.
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Poisson Random Variables

Let X1, X2, . . . be a sequence of independent Poisson random variables with parameter λ = 1
and let

Sn =
n∑

i=1

Xi

We saw before that the sum of independent Poisson random variables is again Poisson.
Hence, Sn is Poisson with parameter λ = n. Hence, it has mean n and variance n.

By the Central Limit Theorem, the distribution should look like a Normal with the same
mean and variance when n gets large.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

n = 5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

n = 10

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

n = 20

x = [(0:(2*n))-0.01 0:(2*n)];
x = sort(x);

P = cdf('poiss', x, n);

N = cdf('norm', x, n, sqrt(n));

plot(x,N,'k-'); hold on;

plot(x,P,'b-'); hold off;
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Binomial Random Variables

Let X1, X2, . . . be a sequence of independent Bernoulli rv’s with parameter p = 0.4 and let

Sn =
n∑

i=1

Xi

The sum of n independent Bernoulli random variables is Binomial with parameters n and p.

Hence, it has mean np and variance npq, where q = 1− p.

By the Central Limit Theorem, the distribution should look like a Normal with the same
mean and variance when n gets large.
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x = [-2:0.01:n];
N = pdf('norm', x, n*p, sqrt(n*p*q));

plot(x,N,'k-'); hold on;

x = [-2:n];

B = pdf('bino', x, n, p);

bar(x,B,0.1,'FaceColor','b','EdgeColor','b'); hold off;
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Gamma Random Variables

Let X1, X2, . . . be a sequence of independent exponential random variables with parameter
λ and let

Sn =
n∑

i=1

Xi

We saw before that the sum of n independent exponential random variables is a Gamma
random variable with parameters n and λ. Hence, it has mean n/λ and variance n/λ2.

By the Central Limit Theorem, the distribution should look like a Normal with the same
mean and variance when n gets large.
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x = [-1:0.01:1+(2*n/lambda)];
G = pdf('gam', x, n, 1/lambda);

N = pdf('norm', x, n/lambda, sqrt(n)/lambda);

plot(x,G,'b-'); hold on;

plot(x,N,'k-'); hold off;
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Recall: Standard and Poors 500 – Daily Returns

µ = E(Ri) ≈
∑
j

Rj/n = 9.86× 10−4, σ2 = Var(Ri) ≈
∑
j

(Rj − µ)2/n = 0.0108
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Why the excellent match? The CENTRAL LIMIT THEOREM!
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