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Chapter Overview

This chapter deals with a special case in which the sample space Ω consists of a large, but
finite, number of elements: N .

As usual, we consider n random variables, X1, X2, . . . , Xn, defined on Ω.

The only difference with what has been discussed before is that the random variables represent
sampling without replacement and are, therefore, not independent random variables.

Sampling with replacement produces iid random variables.

Key point: In modern applications, N is generally very large.

Also, n is big but generally much smaller than N .

In such cases, the differences between sampling with replacement vs without replacement are
tiny.

We will ignore them.

Hence, we will skip everything except Section 7.3.3.
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Election Polling (Midterm election is tomorrow!)

Suppose that p = 48% of voters support candidate A. A polling agency queries n = 1600
randomly selected voters. What is the probability that the poll will show that candidate A
has the support of a majority of the voters?
Let Xi be a Bernoulli random variable that is 1 if the i-th randomly selected voter supports
candidate A and 0 otherwise.
Let

Sn =
n∑

i=1

Xi

denote the number of polled voters who support candidate A.
The random variable Sn is Binomial with parameters n and p. Its mean and standard deviation
are

µ = E(Sn) = np = 1600× 0.48 = 768

and
σ2 = Var(Sn) = npq = 1600× 0.48× 0.52 = 399 =⇒ σ = 20

Hence,

P(Sn ≥ 801) = P(Sn ≥ 800.5) = P((Sn − µ)/σ ≥ 32.5/20)

≈ P(Z ≥ 1.625) = P(Z ≤ −1.625) = 0.05208

where Z is a std. normal rv. (Note: cdf(’bino’, 800.5, 1600, 768/1600) = 0.94801 )
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Election Polling (p unknown)

Suppose that p is not known. A poll of n = 1600 voters is taken and finds that sn = 831
say they are in favor of candidate A. We can use sn as an estimate of the random variable
Sn. Let P̂ = Sn/n. We can estimate p using the sample estimate of P̂ :

p̂ = sn/n = 831/1600

Similarly, we can estimate σ2 = Var(Sn) using np̂q̂ where q̂ = 1− p̂. Hence, the variance of
P̂ is estimated using

p̂q̂/n

We can compute a probability that another poll will also show candidate A ahead:

P(P̂ ≥ 0.5) = P

(
P̂ − p̂√
p̂q̂/n

≥ 0.5− p̂√
p̂q̂/n

)
≈ P

Z ≥ 0.5− 831/1600√
831
1600

769
1600

/1600


= P (Z ≥ −1.55) = P (Z ≤ 1.55)

= 0.9394
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Election Polling – Confidence Interval

Using the fact that
P̂ − p√
pq/n

is approximately a standard normal rv, we see that

P

∣∣∣∣∣ P̂ − p√
pq/n

∣∣∣∣∣ ≤ 1.96

 ≈ 0.95

or equivalently

P
(
P̂ − 1.96

√
pq/n ≤ p ≤ P̂ + 1.96

√
pq/n

)
≈ 0.95

Hence, there is a 95% chance that the random interval[
P̂ − 1.96

√
pq/n, P̂ + 1.96

√
pq/n

]
covers p. Don’t forget that P̂ is a random variable.

Unfortunately, we don’t know p and q. So, we approximate them by p ≈ P̂ and q ≈ 1− P̂ .
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Confidence Interval – Continued

From the actual poll numbers, we have that

n = 1600, P̂ =
831

1600
, 1− P̂ =

769

1600

and so we get a specific interval for p:

[ 0.4949 ≤ p ≤ 0.5439 ]

The number p is fixed. We don’t know what it is, but it is not random. Hence, the above
statement is either right or wrong. If we repeat the experiment (i.e., the poll) over and over
again we will get similar intervals but the endpoints will be a little different every time. The
statement that p lies in the interval will be right about 95% of the time.
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Confidence Intervals – Picking n

The “half-width” of the confidence interval is 1.96
√
pq/n ≈ 0.0245.

Suppose we want to preselect the polling sample size n to be big enough that we can
guarantee that the confidence interval’s half-width is at most 0.01:

1.96
√
pq/n ≤ 0.01

How big must n be? Clearly n must satisfy

n ≥ pq
(
1.96/0.01

)2
Unfortunately, we don’t know p before taking the poll. To be safe, we should use the worst
case. In other words, we need to find that value of p that maximizes pq = p(1 − p). It is
easy to see that this quadratic function of p is maximized when p = 1/2. With this choice,
we get

n ≥ 1

4

(
1.96/0.01

)2
= 9604

Conclusion: The poll must query about 10,000 people in order to get a confidence interval
whose half-width is ±1%.
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Election Polling – One-Sided Confidence Interval

Again using the fact that
P̂ − p√
pq/n

is approximately a standard normal rv, we see that

P

(
P̂ − p√
pq/n

≤ 1.645

)
≈ 0.95

or equivalently

P
(
P̂ − 1.645

√
pq/n ≤ p

)
≈ 0.95

As before, we approximate p ≈ P̂ and q ≈ 1− P̂ on the left side of the inequality.

From the actual poll numbers, we have that

n = 1600, P̂ =
831

1600
, 1− P̂ =

769

1600

and so the interval

[ 0.4949, 1 ]

is a one-sided 95% confidence interval for p.
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A “Better” Confidence Interval

Recall that we started our confidence interval derivation with this formula:

P

∣∣∣∣∣ P̂ − p√
pq/n

∣∣∣∣∣ ≤ 1.96

 ≈ 0.95

We then replaced p and q in the denominator with estimates P̂ and 1 − P̂ . But, let’s not
do this replacement. Instead, lets solve the inequality as given. We start by squaring both
sides: (

P̂ − p
)2

pq/n
≤ z2

where z is a shorthand for 1.96. Multiplying by both sides by pq/n and expanding out the
square, we get

P̂ 2 − 2P̂ p + p2 ≤ z2pq/n

Recalling that q = 1 − p, we can view this as a quadratic inequality in p that defines an
interval whose end points are the solutions to the quadratic equation:(

1 +
z2

n

)
p2 −

(
2P̂ +

z2

n

)
p + P̂ 2 = 0.
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A “Better” Confidence Interval — Continued

From the quadratic formula, we get an explicit formula for the endpoints:

p =

(
2P̂ +

z2

n

)
±

√√√√(2P̂ +
z2

n

)2

− 4

(
1 +

z2

n

)
P̂ 2

2

(
1 +

z2

n

)

=
P̂ +

z2

2n
± z

√
P̂ Q̂

n
+

z2

4n2

1 +
z2

n

Hence, we arrive at the following confidence interval:

P


P̂ +

z2

2n
− z

√
P̂ Q̂

n
+

z2

4n2

1 +
z2

n

≤ p ≤
P̂ +

z2

2n
+ z

√
P̂ Q̂

n
+

z2

4n2

1 +
z2

n

 ≈ 0.95
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Confidence Intervals

Suppose that X1, X2, . . . , Xn are iid random variables with

• unknown distribution

• and unknown mean, µ,

• but (strangely) known variance, σ2.

As usual, we denote the sample mean by X̄ =
1

n

n∑
i=1

Xi.

By the central limit theorem, for n “large”, X̄ is approximately normally distributed with
mean µ and variance σ2/n.

Hence, by the properties derived earlier for normally distributed random variables,

X̄ − µ
σ/
√
n

is approximately normally distributed with mean zero and variance one, and so

P

(
−z ≤ X̄ − µ

σ/
√
n
≤ z

)
= Φ(z)− Φ(−z) = 1− 2Φ(−z)

where Φ(·) denotes the cumulative distribution function for N(0, 1).
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Confidence Intervals – Continued

For z = 1.96, we have Φ(−z) = 0.025 and therefore

P

(
−1.96 ≤ X̄ − µ

σ/
√
n
≤ 1.96

)
= 0.95

The inequalities inside P(·) can be rearranged to read

P
(
X̄ − 1.96σ/

√
n ≤ µ ≤ X̄ + 1.96σ/

√
n
)

= 0.95

In words, we say that there is a 95% chance that the true mean lies within 1.96 standard
deviations of the sample mean.

Since 1.96 is close to 2, it is common practice to report the X̄± 2σ/
√
n interval as the 95%

confidence interval.
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Confidence Intervals – Continued

More generally

P
(
X̄ − z(α/2) σ/

√
n ≤ µ ≤ X̄ + z(α/2) σ/

√
n
)

= 1− α

X
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Confidence Intervals – Continued
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Estimating π

40 independent measurements of “circumference over diameter”:

3.0599, 3.4868, 3.0575, 3.2583, 3.3841,
2.7767, 2.9833, 3.1937, 3.3270, 3.1986,
2.8534, 3.2194, 3.4213, 2.8607, 2.8056,
3.0890, 3.5169, 3.3082, 3.4082, 3.3041,
3.2140, 3.1693, 3.1045, 3.0943, 2.7239,
2.8365, 3.3146, 3.3173, 3.0096, 3.0476,
3.0557, 3.2060, 2.9506, 2.8569, 3.0850,
3.0136, 3.2344, 3.0893, 3.4888, 3.1426

x̄ = 3.1367, σ ≈ 0.188.

95% Confidence interval:

3.1367− 1.96× 0.188/
√

40 ≤ π ≤ 3.1367 + 1.96× 0.188/
√

40

In other words:

3.0793 ≤ π ≤ 3.1941
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Estimating π – One Hundred Repetitions
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Using all 4000 measurements, we get that π = 3.1405± 0.0057
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Confidence Intervals – Unknown Variance

Usually the variance, σ2, is not known.
In such cases, we approximate the variance by the sample variance

σ2 ≈ S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
The random variable

T =
X̄ − µ
S/
√
n

has a t-distribution with parameter n.
Hence, if we pick z so that F (z) = P(T ≤ z) = 0.975, then

P

(
−z ≤ X̄ − µ

S/
√
n
≤ z

)
= F (z)− F (−z) = 0.95

And, therefore a 95% confidence interval for µ can be written as

P
(
X̄ − zS/

√
n ≤ µ ≤ X̄ + zS/

√
n
)

= 0.95

Of course, the constant z depends on n. Values can be found in Table 4 of the textbook or
using Matlab’s tinv function. For large values of n, z ≈ 1.96.
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Local Climate Data
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The data can be grabbed from here:

http://www.princeton.edu/∼rvdb/tmp/McGuireAFB.dat
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Local Climate Data – One Year Differences
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n = 19943

X̄ = 0.0298◦F/yr, S = 10.1◦F/yr, S/
√
n = 0.0716◦F/yr

On a per century basis...

X̄ = 2.98◦F/century, S = 1010◦F/century, S/
√
n = 7.16◦F/century

Confidence interval...
µ = 2.98± 14.03◦F/century

Not convincing!
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The Matlab Code

load -ascii 'McGuireAFB.dat';
[n m] = size(McGuireAFB);

date = McGuireAFB(:,1);

date2 = 1955 + (0:n-1)/365.25;

temp = McGuireAFB(:,2);

plot(date2,temp,'r.'); % DailyAvgTemp.pdf

axis tight;

xlim([date2(1) date2(end)]);

xlabel('date');

ylabel('temperature');

title('Daily Average Temperatures');

'one year diffs'

diffs = temp(1+366:end) - 0.75*temp(2:end-365) - 0.25*temp(1:end-366);

diffs = 100*diffs;

[n m] = size(diffs);

xbar = mean(diffs)

stddev = std(diffs)

stddev/sqrt(n)

1.96*stddev/sqrt(n)

figure(2);

plot(date2(1+366:end),diffs/100,'r.'); % OneYearDiffs.pdf

axis tight;

xlim([date2(1) date2(end)]);

ylim([-48 48]);

xlabel('date');

ylabel('temperature');

title('One-Year Temperature Differences');
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Local Climate Data – Ten Year Differences
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n = 16657

X̄ = 0.397◦F/10 yrs, S = 10.6◦F/10 yrs, S/
√
n = 0.082◦F/10 yrs

On a per century basis...

X̄ = 3.97◦F/century, S = 105.9◦F/century, S/
√
n = 0.82◦F/century

Confidence interval...
µ = 3.97± 1.61◦F/century

Okay, now I’m convinced.
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Local Climate Data – Forty Year Differences
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n = 5699

X̄ = 1.70◦F/40 yrs, S = 10.6◦F/40 yrs, S/
√
n = 0.140◦F/40 yrs

On a per century basis...

X̄ = 4.25◦F/century, S = 26.5◦F/century, S/
√
n = 0.35◦F/century

Confidence interval...
µ = 4.25± 0.69◦F/century

Now I’m even more convinced!
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