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Method of Moments (MoM)

Let X be a random variable. The moments of X are defined as

µ1 = E(X), µ2 = E(X2), µ3 = E(X3), . . .

If X1, X2, . . . , Xn are iid random variables having the same distribution as X , then the
sample moments are defined as

µ̂1 =
1

n

n∑
i=1

Xi, µ̂2 =
1

n

n∑
i=1

X2
i , µ̂3 =

1

n

n∑
i=1

X3
i , . . .

The sample moments can be thought of as estimates of the true moments.

Suppose we know that X has a distribution of a certain type (such as Poisson, or Normal,
etc.) but that the values of the particular parameters that characterize that distribution are
unknown.

If the distribution involves just one unknown parameter (for example, the Poisson distribu-
tion), then we can write a single equation in a single unknown that we can use to solve for
an estimator of the unknown parameter.

If the distribution involves two unknown parameters (for example, the Normal distribution),
then we can employ the same idea using the first two moments.

And so on.
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MoM for Poisson

The Poisson distribution involves a single parameter λ.

As we’ve shown before,

E(X) = λ

Hence, the MoM suggests using

µ̂1 =
1

n

n∑
i=1

Xi

as an estimator for λ.
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Normal MoM

The Normal distribution involves a two parameters µ and σ2.

As we’ve shown before,

µ1 = E(X) = µ

and
µ2 = E(X2) = σ2 + µ2

Thinking of µ1 and µ2 as known (or, at least, “estimatable”), we can think of this as two
equations in two unknowns (µ and σ2) which can be solved

µ = µ1

σ2 = µ2 − µ2
1

From these formulas, we get the following MoM estimators of µ and σ2:

µ̂ =
1

n

n∑
i=1

Xi = X̄

σ̂2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(
Xi − X̄

)2
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Maximum Likelihood: An Alternative to MoM

Consider a random variable X with a probability density (or mass) function f (x).

Suppose that this density function depends on a parameter. Let’s call it θ and write the
density function as f (x|θ).

If we think of x as a parameter and θ as the variable, then this function is called the likelihood
that θ is the correct parameter value given an observation x:

lik(θ) = f (x|θ)

If several iid observations of random variable X are taken, then the joint density function is
the product and so the likelihood function is also a product:

lik(θ) =
n∏
i=1

f (xi|θ)

The maximum likelihood estimator is that choice of θ that makes the likelihood the largest.

Maximizing the likelihood involves setting a derivative to zero. Since, derivatives of products
are tedious to compute, a standard trick is to maximize the logarithm of the likelihood

l(θ) = log(lik(θ)) =
n∑
i=1

log(f (xi|θ))
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MLE for Poisson

The density function for a Poisson random variable is

f (x|λ) =
λx

x!
e−λ, x = 0, 1, 2, . . .

Hence, the log-likelihood function associated with n independent observations is

l(λ) =
n∑
i=1

(
xi log(λ)− log(xi!)− λ

)
We maximize by taking the derivative and setting it to zero:

d

dλ
l(λ) =

n∑
i=1

(
xi
λ
− 1

)
= 0

Solving for λ, denoting the solution by λ̂ and using a priori (i.e., probabilistic) upper-case
random-variable notation we see that

λ̂ =
1

n

n∑
i=1

Xi

In words, the MLE estimator for parameter λ is just the sample mean (same as MoM).
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MLE for Normal

The density function for a Normal random variable is

f (x|µ, σ) =
1√
2πσ

e−(x−µ)
2/2σ2, −∞ < x <∞

The log-likelihood function associated with n independent observations is

l(µ, σ) =
n∑
i=1

(
− log

(√
2πσ

)
− (xi − µ)2

2σ2

)

Differentiating, we get

∂l

∂µ
(µ, σ) =

n∑
i=1

(xi − µ)

σ2

∂l

∂σ
(µ, σ) =

n∑
i=1

(
−1

σ
+

(xi − µ)2

σ3

)
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MLE for Normal – Continued

Setting the first partial derivative to zero and solving for µ̂, we get

n∑
i=1

(xi − µ̂)

σ2
= 0 =⇒ µ̂ =

1

n

n∑
i=1

Xi

Next, setting the second partial derivative to zero and solving for σ̂, we get

n∑
i=1

(
−1

σ̂
+

(xi − µ̂)2

σ̂3

)
= 0 =⇒

n∑
i=1

(
−σ̂2 + (xi − µ̂)2

)
= 0

=⇒ −nσ̂2 +
n∑
i=1

(xi − µ̂)2 = 0

=⇒ σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2

Conclusion: Same answer as was obtained by MoM.
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Example: Photography = Counting Photons
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NGC 6781 – Red Channel – One Frame
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NGC 6781 – Red Channel – 37 Frames
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Method of Moments: Digital Camera

For a given exposure time, the number of photons that land on a particular pixel of a digital
camera can be perfectly modeled as a Poisson random variable X . The true intensity of the
light at this pixel is proportional to the (unknown) mean λ of this random X . The digital
camera provides a number to the image file that has the form

Y = α + γX

The unknown constants α and γ are called the bias and the gain, respectively.

Using the fact that X is Poisson with parameter λ, it is easy to compute that

E(X) = λ, E(X(X − 1)) = λ2, and E(X(X − 1)(X − 2)) = λ3

From these, it is easy to find the first three moments:

E(X) = λ, E(X2) = λ2 + λ, and E(X3) = λ3 + 3λ2 + λ

And, from these it is easy to derive formulas for the moments of Y :

E(Y ) = α + γλ

E(Y 2) = E(α + γX)2 = E(α2 + 2αγX + γ2X2) = α2 + 2αγλ + γ2(λ2 + λ)

E(Y 3) = E(α + γX)3 = · · · = α3 + 3α2γλ + 3αγ2(λ2 + λ) + γ3(λ3 + 3λ2 + λ)
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If we assume that we take n independent digital pictures, then we will have n realizations,
y1, y2, . . . , yn, of independent random variables with the distribution of Y .

We will use the sample moments as estimates of the true moments:

E(Y ) ≈ 1

n

∑
i

yi, E(Y 2) ≈ 1

n

∑
i

y2i , E(Y 3) ≈ 1

n

∑
i

y3i

With these three approximations, the three equations on the previous slide can be viewed
as three equations in three unknowns: α, γ, and λ. Unfortunately, these equations are
nonlinear. But, with a little tinkering, they can be solved:

γ =
ζ3

σ2
− 3µ

λ =
σ2

γ2

α = µ− γλ

where

µ = E(Y ), σ2 = E(Y 2)− (E(Y ))2, and ζ3 = E(Y 3)− (E(Y ))3
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A Very Short Exposure of a “Flat” Field

A cropped single image. Highly enlarged to make each pixel easy to see. Highly random
from pixel to pixel.

Average of 666 frames. Much smoother. Some “dead” pixels are now evident (and some
“warm” ones too).
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Poisson: The Movie
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Associated Histograms

One frame.
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Focus on Just Three Specific Pixels

(25, 25)

(25, 30)

(30, 30)

Matlab command for making a histogram

having 100 bins using data stored in x:

histogram(x,100);
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Results

For pixel (25, 25):
α = 223, γ = 0.525, λ = 1797
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CDF Comparison: Method of Moments

Averaging over all pixels in the image, we get

α = 210± 20, γ = 0.560± 0.049, λ = 1708± 116
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Final Comments on MoM for Digital Camera

If the bias, α, is assumed known (from separate independent analysis), then we have just
two unknown parameters, γ and λ, and so we need only the first two moments. The algebra
is much easier.

The answer is:

γ =
σ2

µ− α

λ =
(µ− α)2

σ2

This is how photographers actually do it.
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Maximum Likelihood: Digital Camera

Recall that Y = α + γX , where X is a Poisson random variable with parameter λ.

It is easy to compute the density function for Y :

fY (y) = P (Y = y) = P (X = (y − α)/γ) =
λ(y−α)/γ

((y − α)/γ)!
e−λ

(of course, we assume that (y − α)/γ is an integer.

If we have several independent observations, then the joint density function is just the product:

fY1,...,Yn(y1, . . . , yn) =
n∏
i=1

λ(yi−α)/γ

((yi − α)/γ)!
e−λ

Viewed as a function of α, γ, and λ, this function is called the likelihood function and its
logarithm is called the log-likelihood function:

l(α, γ, λ) =
n∑
i=1

yi − α
γ

log(λ)− log

(
yi − α
γ

!

)
− λ


Ugh!!!
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Example 8.5.A — Hardy-Weinberg Model

In genetics, a particular gene can be either dominant (A) or recessive (a). A person inherits
one copy of the gene from each parent and therefore has a genetic makeup consisting of two
copies of the gene. Hence, there are three possible genotypes:

AA: purely dominate Aa: heterozygotic aa: purely recessive

Suppose that, in the entire population, the dominate gene A occurs with probability p and the
recessive gene a occurs with probability q = 1− p. Then, according to the Hardy-Weinberg
model, the probability that a randomly selected person has a specific genotype is given by

AA Aa aa
p2 2pq q2

We don’t know p. But, we can do genetic testing and determine out of n people that X1

are purely dominate, X2 are heterozygotic, and X3 are purely recessive in this geneotype.

The joint pmf for these random variables is

P (X1 = x1, X2 = x2, X3 = x3) =
n!

x1!x2!x3!
(p2)x1(2pq)x2(q2)x3

A fundamental question is: what function of X1, X2, and X3 is a good estimator of p?
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Hardy-Weinberg Model — MOM

In this model, there are three random variables. Hence, there are three first moments:

E(X1) = np2, E(X2) = 2npq, E(X3) = nq2

But, there is only one parameter: p.

Since each of these random variables can be thought of as a Binomial random variable and
since a Binomial random variable is a sum of Bernoulli random variables, the method of
moments can be used to find estimators for p.

If we use the equation for the mean of X1, we get the estimator

P1 =
√
X1/n.

On the other hand, if we use the equation for the mean of X2, we get two estimators

P2 =
1±

√
1− 2X2/n

2
.

Lastly, if we use the equation for the mean of X3, we get the estimator

P3 = 1−
√
X3/n.

Each of these estimators uses only one of the three variables. Can we do better? Yes...
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Hardy-Weinberg Model — MLE

The log-likelihood function is given by

l(p) = c + x1 log(p2) + x2 log(2p(1− p)) + x3 log((1− p)2).

Setting the derivative to zero, we get

∂l

∂p
(p) = x1

2

p
+ x2

(
1

p
− 1

1− p

)
− x3

2

1− p
= 0.

Multiplying both sides by p(1− p), we get

2x1(1− p) + x2(1− 2p)− 2x3p = 0.

Solving for p, we get

p =
2x1 + x2

2x1 + 2x2 + 2x3

And, since x1 + x2 + x3 = n, we finally get that the maximum likelihood estimator of p is

P̂ =
2X1 + X2

2n
=

1

2
+
X1 −X3

2n

Note that the first formula is highly intuitive!
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Hardy-Weinberg Model — Real Data

Here’s some real data (see textbook for source):

AA Aa aa
342 500 187

Using this data, we can make the following MOM estimates for p (and q):

p̂1 =
√

345/1029 = 0.5790

p̂2 =
1±

√
1− 2× 500/1029

2
=

{
0.5839
0.4161

p̂3 = 1−
√

187/1029 = 0.5737

Using the data, we can make the following MLE estimate for p (and q):

p̂ =
1

2
+

342− 187

2× 1029
= 0.5753, q̂ = 1− p̂ = 0.4247

A natural question arises: How good are these estimates?

See next slide.
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Bootstrap

If we had several sets of independent data, we could compute several values of p̂ and compute
the average and the standard deviation of these values.

Unfortunately, we only have the one data set shown on the previous slide.

But, we do know the theoretical distribution underlying this data and that’s extremely helpful.

We can assume that p̂ = 0.5753 is reasonably close to the correct answer and we can then
artificially generate thousands of new data sets using this value of p.

The new data sets will be random—the values of x1, x2 and x3 will vary.

We can then compute many different estimates of p̂ based on these simuations.

The average value will be very close to 0.5753.

But, the key is that we can compute a standard deviation which will give us an idea how
precise our estimate p̂ = 0.5753 is.
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Bootstrap — Continued

Here’s Matlab code to run bootstrap 10,000 times:
p = 0.5753;

m = 10000;

n = 1029;

M = random('unif',0,1,[n m])<p; % male parent

F = random('unif',0,1,[n m])<p; % female parent

G = M + F; % 2=dominate, 1=heterozygote, 0=recessive

x1 = sum(G == 2);

x2 = sum(G == 1);

x3 = sum(G == 0);

p = 0.5 + (x1-x3)/(2*n);

mean(p)

std(p)

The answers for p̂ are:

mean(p) = 0.5753, std(p) = 0.0110

Hence, an approximate 95% confidence interval for the true value of p is

0.5753− 2× 0.0110 ≤ p ≤ 0.5753 + 2× 0.0110

Values for the mean and standard deviation of p̂1 and p̂3 are also easy to compute:

mean(p1) = 0.5751, std(p1) = 0.0129

mean(p3) = 0.5754, std(p3) = 0.0142
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