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Coin Tossing Example

Consider two coins. Coin 0 is fair (p = 0.5) but coin 1 is biased in favor of heads: p = 0.7.
Imagine tossing one of these coins n times. The number of heads is a binomial random
variable with the corresponding p values. The probability mass function is therefore

p(x) =

(
n

x

)
px(1− p)n−x

For n = 8, the probability mass functions are

x 0 1 2 3 4 5 6 7 8
p(x|H0) 0.0039 0.0313 0.1094 0.2188 0.2734 0.2188 0.1094 0.0313 0.0039
p(x|H1) 0.0001 0.0012 0.0100 0.0467 0.1361 0.2541 0.2965 0.1977 0.0576

Suppose that we know that our coin is either the fair coin or the biased coin. We flip it
n = 8 times and it comes up heads 3 times. The probability of getting 3 heads with the fair
coin is p(3|H0) = 0.2188 whereas the probability of getting 3 heads with the biased coin is
p(3|H1) = 0.0467. Hence, it is 0.2188/0.0467 = 4.69 times more likely that our coin is the
fair coin than it is the biased coin. The ratio p(x|H0)/p(x|H1) is called the likelihood ratio:

x 0 1 2 3 4 5 6 7 8

p(x|H0)

p(x|H1)
59.5374 25.5160 10.9354 4.6866 2.0086 0.8608 0.3689 0.1581 0.0678
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Bayesian Approach

We consider two hypotheses:

H0 = “Coin 0 is being tossed” and H1 = “Coin 1 is being tossed”

Hypothesis H0 is called the null hypothesis whereas H1 is called the alternative hypothesis.

Suppose we have a prior believe as to the probability P (H0) that coin 0 is being tossed. Let
P (H1) = 1 − P (H0) denote our prior belief regarding the probability that coin 1 is being
tossed. A natural initial choice is P (H0) = P (H1) = 1/2.

If we now toss the coin n times and observe x heads, then the posterior probability estimate
that coin 0 is being tossed is

P (H0|x) =
p(x|H0)P (H0)

p(x|H0)P (H0) + p(x|H1)P (H1)

Hence, we get a simple intuitive formula for the ratio

P (H0|x)

P (H1|x)
=
P (H0)

P (H1)

p(x|H0)

p(x|H1)
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Making a Decision

If we must make a choice, we’d probably go with H0 if

P (H0|x)

P (H1|x)
=

P (H0)

P (H1)

p(x|H0)

p(x|H1)
> 1

and H1 otherwise. This inequality can be expressed in terms of the likelihood ratio:

p(x|H0)

p(x|H1)
>

P (H1)

P (H0)
=: c

where c denotes the ratio of our priors.

If we use an unbiased prior, then c = 1 and we will accept H0 if X ≤ 4 and we will reject
H0 is X > 4.
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Type I and Type II Errors

With c = 1, we will accept H0 if X ≤ 4 and we will reject H0 if X > 4.

Type I Error: Reject H0 when it is correct:

P (reject H0 | H0) = P (X > 4|H0) = 0.3634

Type II Error: Accept H0 when it is incorrect:

P (accept H0 | H1) = P (X ≤ 4|H1) = 0.1941

With c = 5, we will accept H0 if X ≤ 2 and we will reject H0 is X > 2. In this case, we get

Type I Error: P (reject H0 | H0) = P (X > 2|H0) = 0.8556

Type II Error: P (accept H0 | H1) = P (X ≤ 2|H1) = 0.0113

The parameter c controls the trade-off between Type-I and Type-II errors.
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Type-I and Type-II Errors

PPPPPPPPP

Decision
Reality H0 true H1 true

Accept H0 Yes! Type-II error

Reject H0 Type-I error Yes!

A Type-I error is also called a false discovery or a false positive.

A Type-II error is also called a missed discovery or a false negative.

5



Neyman-Pearson Paradigm

Abandon the Bayesian approach.

Instead, focus on probability of Type-I and Type-II errors associated with a threshold c.

Things to Consider

It is conventional to choose the simpler of two hypotheses as the null.

The consequences of incorrectly rejecting one hypothesis may be graver than those of incor-
rectly rejecting the other. In such a case, the former should be chosen as the null hypothesis,
because the probability of falsely rejecting it could be controlled by choosing α. Examples of
this kind arise in screening new drugs; frequently, it must be documented rather conclusively
that a new drug has a positive effect before it is accepted for general use.

In scientific investigations, the null hypothesis is often a simple explanation that must be
discredited in order to demonstrate the presence of some physical phenomenon or effect.

In criminal matters: Innocent until proven guilty!
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Terminology

Null Hypothesis: H0

Alternative Hypothesis: H1

Type I Error: Rejecting H0 when it is true.

Significance Level: The probability of a Type-I error. Usually denoted α.

Type II Error: Accepting H0 when it is false. Probability usually denoted β.

Power: 1− β.

Test Statistic: The measured quantity on which a decision is based.

Rejection region: The set of values of the test statistic that lead to rejection of the
null hypothesis.

Acceptance region: The set of values of the test statistic that lead to acceptance of the
null hypothesis.

Null Distribution: p(x|H0)
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Example 9.2.A (Unrealistic)

Let X1, X2, . . . , Xn be a random sample from a normal distribution having known variance
σ2 but unknown mean µ. We consider two hypotheses:

H0 : µ = µ0

H1 : µ = µ1

where µ0 and µ1 are two specific possible values (suppose that µ0 < µ1).

The likelihood ratio is the ratio of the joint density functions:

f0(x1, . . . , xn)

f1(x1, . . . , xn)
=

exp

− n∑
i=1

(xi − µ0)
2/2σ2


exp

− n∑
i=1

(xi − µ1)
2/2σ2


We will accept the null hypothesis if this ratio is larger than some positive threshold.
Let’s call the threshold ec and take logs of both sides:

−
n∑
i=1

(xi − µ0)
2/2σ2 +

n∑
i=1

(xi − µ1)
2/2σ2 > c
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Example 9.2.A – Continued

Expanding the squares, combining the two sums, and simplifying, we get

n∑
i=1

(
2xi(µ0 − µ1)− µ2

0 + µ2
1

)
> 2σ2c

Dividing both sides by 2n and by µ1 − µ0, we get

−x̄ + (µ0 + µ1)/2 > σ2c/n(µ1 − µ0)

where x̄ = 1
n

∑n
i=1 xi. Finally, isolating x̄ from the other terms, we get

x̄ < (µ0 + µ1)/2− σ2c/n(µ1 − µ0)

Choosing c = 0 corresponds to equally probable priors (since e0 = 1). In this case, we get
the intuitive result that we should accept the null hypothesis if

x̄ < (µ0 + µ1)/2

From these calculations, we see that the test statistic is the sample mean X̄ = 1
n

∑n
i=1Xi

and that we should reject the null hypothesis when the test statistic is larger than some
threshold value, let’s call it x0.
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Example 9.2.A – Significance Level

In hypothesis testing, one designs the test according to a set value for the significance level.
In this problem, the significance level is given by

α = P (X̄ > x0 | H0)

If we subtract µ0 from both sides and then divide by σ/
√
n, we get a random variable with

a standard normal distribution:

α = P

 X̄ − µ0

σ/
√
n
>
x0 − µ0

σ/
√
n

∣∣∣∣∣ H0

 = 1− FN

(
x0 − µ0

σ/
√
n

)

where FN denotes the cumulative distribution function for a standard Normal random vari-
able.

In a similar manner, we can compute the probability of a Type-II error:

β = P (X̄ ≤ x0 | H1) = P

 X̄ − µ1

σ/
√
n
≤ x0 − µ1

σ/
√
n

∣∣∣∣∣ H1

 = FN

(
x0 − µ1

σ/
√
n

)
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Example 9.2.A – α vs. β Trade-Off
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As x0 slides from left to right, α goes down whereas β goes up.

The sum α + β is minimized at x0 = (µ0 + µ1)/2.

To make both α and β smaller, need to make σ/
√
n smaller; i.e., increase n.
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Generalized Likelihood Ratios—Example 9.4.A

Let X1, . . . , Xn be iid Normal rv’s with unknown mean µ and known variance σ2.
We consider two hypotheses:

H0 : µ = µ0

H1 : µ 6= µ0

The null hypothesis H0 is simple. The alternative H1 is composite.
For simple hypotheses, the likelihood that the hypothesis is true given specific observed values
x1, x2, . . . , xn is just the joint pdf. Hence, the likelihood that H0 is true is given by:

f0(x1, . . . , xn) =
1

(
√

2πσ)n
e−

1
2σ2

∑n
i=1(xi−µ0)2

For composite hypotheses, the generalized likelihood is taken to be the largest possible
likelihood that could be obtained over all choices of the distribution. So, the likelihood that
H1 is true is given by:

f1(x1, . . . , xn) = max
θ

1

(
√

2πσ)n
e−

1
2σ2

∑n
i=1(xi−θ)2 MLE

=
1

(
√

2πσ)n
e−

1
2σ2

∑n
i=1(xi−x̄)2

NOTE: The maximum is achieved by the maximum likelihood estimator, which we have
already seen is just x̄.
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Example 9.4.A Continued

As before, we define our acceptance region based on the log-likelihoood-ratio:

Λ(x1, . . . , xn) = log
f0(x1, . . . , xn)

f1(x1, . . . , xn)
= − 1

2σ2

n∑
i=1

(xi − µ0)
2 +

1

2σ2

n∑
i=1

(xi − x̄)2

Note that f0 ≤ f1 and therefore Λ ≤ 0. We accept the null hypothesis when Λ is not too
negative:

Λ(x1, . . . , xn) > −c
for some negative constant: −c.
Again as before, we expand the quadratics and simplify the inequality to get

n∑
i=1

(
2xi(µ0 − x̄)− µ2

0 + x̄2
)
> −2σ2c

Now, we use the fact that
∑

i xi = nx̄ to help us further simplify:

2x̄(µ0 − x̄)− µ2
0 + x̄2 > −2

σ2

n
c

Some final algebraic manipulations and we get:

(x̄− µ0)
2 < 2

σ2

n
c
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Example 9.4.A Continued

And, switching to capital-letter random-variable notation, we get that we should accept H0

if

|X̄ − µ0| <
√

2c
σ√
n

or, in other words,

µ0 −
√

2c
σ√
n
< X̄ < µ0 +

√
2c

σ√
n
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Example 9.3.A (More Realistic)

As before, let X1, X2, . . . , Xn be a random sample from a normal distribution having known
variance σ2 but unknown mean µ.
This time, let’s consider these two hypotheses:

H0 : µ = µ0

H1 : µ 6= µ0

where µ0 is a specific/given value.
Reject null hypothesis if ∣∣∣X̄ − µ0

∣∣∣ > x0

where x0 is chosen so that

PH0

(∣∣∣X̄ − µ0

∣∣∣ > x0

)
= α

(note the probability is computed assuming H0 is true). Since we know that the distribution
is normal, we see that

x0 = z(α/2) σX̄
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Confidence Interval vs Hypothesis Test

It’s easy to check that

PH0

(∣∣∣X̄ − µ0

∣∣∣ > z(α/2) σX̄

)
= α

is equivalent to

PH0

(
X̄ − z(α/2) σX̄ ≤ µ0 ≤ X̄ + z(α/2) σX̄

)
= 1− α

The 100(1− α)% confidence interval for µ is

Pµ
(
X̄ − z(α/2) σX̄ ≤ µ ≤ X̄ + z(α/2) σX̄

)
= 1− α

Comparing the acceptance region for the test to the confidence interval, we see that µ0 lies
in the confidence interval for µ if and only if the hypothesis test accepts the null hypothesis.
In other words, the confidence interval consists precisely of all those values of µ0 for which
the null hypothesis H0 : µ = µ0 is accepted.
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p-Values
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Local Climate Data – Forty Year Differences

On a per century basis...

X̄ = 4.25◦F/century,

S = 26.5◦F/century,

S/
√
n = 0.35◦F/century
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Forty−Year Temperature Differences

Hypotheses:
H0 : µ = 0, H1 : µ 6= 0

Number of standard deviations out:

z = X̄/SX̄ = 4.25/0.35 = 12.1

Probability that such an outlier happened by chance:

p = P (N > 12.1) = 5× 10−34

Now I’m way convinced!
Caveat: The random variables are not fully independent. If it’s warmer than average today,
then it is likely to be warmer than average tomorrow. Had we used daily averages from
just one day a week, the variables would be closer to independent. We’d still reject the null
hypothesis but z would be smaller (by a factor of

√
7) and so the p value would be larger.
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