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simply infeasible, as the following example illustrates:

maximize 5x1 + 4x2

subject to x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −9

x1, x2 ≥ 0.

Indeed, the second constraint implies that x1 + x2 ≥ 4.5, which contradicts the first
constraint. If a problem has no feasible solution, then the problem itself is called
infeasible.

At the other extreme from infeasible problems, one finds unbounded problems.
A problem is unbounded if it has feasible solutions with arbitrarily large objective
values. For example, consider

maximize x1 − 4x2

subject to −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2

x1, x2 ≥ 0.

Here, we could set x2 to zero and let x1 be arbitrarily large. As long as x1 is greater
than 2 the solution will be feasible, and as it gets large the objective function does too.
Hence, the problem is unbounded. In addition to finding optimal solutions to linear
programming problems, we shall also be interested in detecting when a problem is
infeasible or unbounded.

Exercises

1.1 A steel company must decide how to allocate next week’s time on a rolling
mill, which is a machine that takes unfinished slabs of steel as input and can
produce either of two semi-finished products: bands and coils. The mill’s
two products come off the rolling line at different rates:

Bands 200 tons/hr

Coils 140 tons/hr .

They also produce different profits:

Bands $ 25/ton

Coils $ 30/ton .

Based on currently booked orders, the following upper bounds are placed on
the amount of each product to produce:
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Bands 6000 tons

Coils 4000 tons .
Given that there are 40 hours of production time available this week, the
problem is to decide how many tons of bands and how many tons of coils
should be produced to yield the greatest profit. Formulate this problem as a
linear programming problem. Can you solve this problem by inspection?

1.2 A small airline, Ivy Air, flies between three cities: Ithaca, Newark, and
Boston. They offer several flights but, for this problem, let us focus on
the Friday afternoon flight that departs from Ithaca, stops in Newark, and
continues to Boston. There are three types of passengers:
(a) Those traveling from Ithaca to Newark.
(b) Those traveling from Newark to Boston.
(c) Those traveling from Ithaca to Boston.

The aircraft is a small commuter plane that seats 30 passengers. The airline
offers three fare classes:
(a) Y class: full coach.
(b) B class: nonrefundable.
(c) M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., com-
petitors), have been set and advertised as follows:

Ithaca–Newark Newark–Boston Ithaca–Boston

Y 300 160 360

B 220 130 280

M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined
the following upper bounds on the number of potential customers in each of
the 9 possible origin-destination/fare-class combinations:

Ithaca–Newark Newark–Boston Ithaca–Boston

Y 4 8 3

B 8 13 10

M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/fare-
class combinations to sell. The constraints are that the plane cannot be
overbooked on either of the two legs of the flight and that the number of
tickets made available cannot exceed the forecasted maximum demand. The
objective is to maximize the revenue. Formulate this problem as a linear
programming problem.
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1.3 Suppose that Y is a random variable taking on one of n known values:

a1, a2, . . . , an.

Suppose we know that Y either has distribution p given by

P(Y = aj) = pj

or it has distribution q given by

P(Y = aj) = qj .

Of course, the numbers pj , j = 1, 2, . . . , n are nonnegative and sum to
one. The same is true for the qj’s. Based on a single observation of Y ,
we wish to guess whether it has distribution p or distribution q. That is,
for each possible outcome aj , we will assert with probability xj that the
distribution is p and with probability 1−xj that the distribution is q. We wish
to determine the probabilities xj , j = 1, 2, . . . , n, such that the probability
of saying the distribution is p when in fact it is q has probability no larger
than β, where β is some small positive value (such as 0.05). Furthermore,
given this constraint, we wish to maximize the probability that we say the
distribution is p when in fact it is p. Formulate this maximization problem
as a linear programming problem.

Notes

The subject of linear programming has its roots in the study of linear inequali-
ties, which can be traced as far back as 1826 to the work of Fourier. Since then, many
mathematicians have proved special cases of the most important result in the subject—
the duality theorem. The applied side of the subject got its start in 1939 when L.V.
Kantorovich noted the practical importance of a certain class of linear programming
problems and gave an algorithm for their solution—see Kantorovich (1960). Unfortu-
nately, for several years, Kantorovich’s work was unknown in the West and unnoticed
in the East. The subject really took off in 1947 when G.B. Dantzig invented the simplex
method for solving the linear programming problems that arose in U.S. Air Force plan-
ning problems. The earliest published accounts of Dantzig’s work appeared in 1951
(Dantzig 1951a,b). His monograph (Dantzig 1963) remains an important reference. In
the same year that Dantzig invented the simplex method, T.C. Koopmans showed that
linear programming provided the appropriate model for the analysis of classical eco-
nomic theories. In 1975, the Royal Swedish Academy of Sciences awarded the Nobel
Prize in economic science to L.V. Kantorovich and T.C. Koopmans “for their contri-
butions to the theory of optimum allocation of resources.” Apparently the academy
regarded Dantzig’s work as too mathematical for the prize in economics (and there is
no Nobel Prize in mathematics).


