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Acol = A(:,col);
[t, row] = max(-Acol./(b+mu*b0));

else
mu = mu_row;
Arow = A(row,:);
[s, col] = max(-Arow./(c+mu*c0));

end

Finally, as part of every pivot we have to update b0 and c0:
brow = b0(row);
b0 = b0 - brow*Acol/a;
b0(row) = -brow/a;

ccol = c0(col);
c0 = c0 - ccol*Arow/a;
c0(col) = ccol/a;

The code was run 1000 times. Figure 12.4 shows the number of pivots plotted
against the sum m + n. Just as we saw with the primal simplex method in Chapter
4, m + n does not seem to be a good measure of problem size as many problems of
a given size solve much more quickly than the more typical cases. Hence, there are a
number of “outliers.” Overlayed on the scatter plot are the L1 and L2 regression lines.
While neither regression line follows what appears to the an upper line of points that
seems to dominate the results, the L1 is closer to that than is the L2 line.

The result of the L1-regression is:

T ≈ e−0.722e1.12 log(m+n) = 0.486(m+ n)1.12.

The result of the L2-regression is:

T ≈ e−0.606e1.05 log(m+n) = 0.546(m+ n)1.05.

Finally, as in Chapter 4, min(m,n) is a better measure of problem size for these
randomly generated problems. Figure 12.5 shows the same data plotted against min(m,n).

In this case, both regression lines are about the same:

T ≈ e−0.2e1.46 log(min(m,n)) = 0.8 min(m,n)1.46.

Exercises

12.1 Find the L2-regression line for the data shown in Figure 12.6.

12.2 Find the L1-regression line for the data shown in Figure 12.6.

12.3 Midrange. Given a sorted set of real numbers, {b1, b2, . . . , bm}, show that
the midrange, x̃ = (b1 + bm)/2, minimizes the maximum deviation from
the set of observations. That is,

1

2
(b1 + bm) = argminx∈R max

i
|x− bi|.
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FIGURE 12.4. The parametric self-dual simplex method was used
to solve 1000 problems known to have an optimal solution. Shown
here is a log-log plot showing the number of pivots required to reach
optimality plotted against m + n. Also shown are the L1 and L2

regression lines.

12.4 Centroid. Given a set of points {b1, b2, . . . , bm} on the plane R2, show that
the centroid

x̄ =
1

m

m∑
i=1

bi

minimizes the sum of the squares of the distance to each point in the set.
That is, x̄ solves the following optimization problem:

minimize
m∑
i=1

‖x− bi‖22
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FIGURE 12.5. The parametric self-dual simplex method was used
to solve 1000 problems known to have an optimal solution. Shown
here is a log-log plot showing the number of pivots required to reach
optimality plotted against min(m,n). In this case, the L1 and L2

regression lines are almost exactly on top of each other.

Note: Each data point bi is a vector in R2 whose components are denoted,
say, by bi1 and bi2, and, as usual, the subscript 2 on the norm denotes the
Euclidean norm. Hence,

‖x− bi‖2 =
√

(x1 − bi1)2 + (x2 − bi2)2.

12.5 Facility Location. A common problem is to determine where to locate a
facility so that the distance from its customers is minimized. That is, given
a set of points {b1, b2, . . . , bm} on the plane R2, the problem is to find x̂ =
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FIGURE 12.6. Four data points for a linear regression.

(x̂1, x̂2) that solves the following optimization problem:

minimize
m∑
i=1

‖x− bi‖2.

As for L1-regression, there is no explicit formula for x̂, but an iterative
scheme can be derived along the same lines as in Section 12.5. Derive an
explicit formula for this iteration scheme.

12.6 A Simple Steiner Tree. Suppose there are only three customers in the facility
location problem of the previous exercise. Suppose that the triangle formed
by b1, b2, and b3 has no angles greater than 120 degrees. Show that the
solution x̂ to the facility location problem is the unique point in the triangle
from whose perspective the three customers are 120 degrees apart from each
other. What is the solution if one of the angles, say, at vertex b1, is more than
120 degrees?

12.7 Sales Force Planning. A distributor of office equipment finds that the busi-
ness has seasonal peaks and valleys. The company uses two types of sales
persons: (a) regular employees who are employed year-round and cost the
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Jan 390 May 310 Sep 550

Feb 420 Jun 590 Oct 360

Mar 340 Jul 340 Nov 420

Apr 320 Aug 580 Dec 600 .

TABLE 12.2. Projected labor hours by month.

company $17.50/hr (fully loaded for benefits and taxes) and (b) temporary
employees supplied by an outside agency at a cost of $25/hr. Projections for
the number of hours of labor by month for the following year are shown in
Table 12.2. Let ai denote the number of hours of labor needed for month i
and let x denote the number of hours per month of labor that will be handled
by regular employees. To minimize total labor costs, one needs to solve the
following optimization problem:

minimize
∑
i

(25 max(ai − x, 0) + 17.50x).

(a) Show how to reformulate this problem as a linear programming prob-
lem.

(b) Solve the problem for the specific data given above.
(c) Use calculus to find a formula giving the optimal value for x.

12.8 Acceleration Due to Gravity. The law of gravity from classical physics says
that an object dropped from a tall building will, in the absence of air resis-
tance, have a constant rate of acceleration g so that the height x, as a function
of time t, is given by

x(t) = −1

2
gt2.

Unfortunately, the effects of air resistance cannot be ignored. To include
them, we assume that the object experiences a retarding force that is directly
proportional to its speed. Letting v(t) denote the velocity of the object at
time t, the equations that describe the motion are then given by

x′(t) = v(t), t > 0, x(0) = 0,

v′(t) = −g − fv(t), t > 0, v(0) = 0
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(f is the unknown constant of proportionality from the air resistance). These
equations can be solved explicitly for x as a function of t:

x(t) =− g

f2

(
e−ft − 1 + ft

)
v(t) =− g

f

(
1− e−ft

)
.

It is clear from the equation for the velocity that the terminal velocity is g/f .
It would be nice to be able to compute g by measuring this velocity, but this
is not possible, since the terminal velocity involves both f and g. However,
we can use the formula for x(t) to get a two-parameter model from which
we can compute both f and g. Indeed, if we assume that all measurements
are taken after terminal velocity has been “reached” (i.e., when e−ft is much
smaller than 1), then we can write a simple linear expression relating posi-
tion to time:

x =
g

f2
− g

f
t.

Now, in our experiments we shall set values of x (corresponding to specific
positions below the drop point) and measure the time at which the object
passes these positions. Since we prefer to write regression models with the
observed variable expressed as a linear function of the control variables, let
us rearrange the above expression so that t appears as a function of x:

t =
1

f
− f

g
x.

Using this regression model and the data shown in Table 12.3, do an L2-
regression to compute estimates for 1/f and −f/g. From these estimates
derive an estimate for g. If you have access to linear programming software,
solve the problem using an L1-regression and compare your answers.

12.9 Iteratively Reweighted Least Squares. Show that the sequence of iterates in
the iteratively reweighted least squares algorithm produces a monotonically
decreasing sequence of objective function values by filling in the details
in the following outline. First, recall that the objective function for L1-
regression is given by

f(x) = ‖b−Ax‖1 =

m∑
i=1

εi(x),

where

εi(x) =

∣∣∣∣∣∣bi −
n∑
j=1

aijxj

∣∣∣∣∣∣ .
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Obs. Position Time

Number (meters) (secs)

1 -10 3.72

2 -20 7.06

3 -30 10.46

4 -10 3.71

5 -20 7.00

6 -30 10.48

7 -10 3.67

8 -20 7.08

9 -30 10.33

TABLE 12.3. Time at which a falling object passes certain points.

Also, the function that defines the iterative scheme is given by

T (x) =
(
ATE−1

x A
)−1

ATE−1
x b,

where Ex denotes the diagonal matrix with the vector ε(x) on its diagonal.
Our aim is to show that

f(T (x)) < f(x).

In order to prove this inequality, let

gx(z) =

m∑
i=1

ε2i (z)

εi(x)
= ‖E−1/2

x (b−Az)‖22.

(a) Use calculus to show that, for each x, T (x) is a global minimum of gx.
(b) Show that gx(x) = f(x).
(c) By writing

εi(T (x)) = εi(x) + (εi(T (x))− εi(x))

and then substituting the right-hand expression into the definition of
gx(T (x)), show that

gx(T (x)) ≥ 2f(T (x))− f(x).

(d) Combine the three steps above to finish the proof.
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12.10 In our study of means and medians, we showed that the median of a collec-
tion of numbers, b1, b2, . . . , bn, is the number x̂ that minimizes

∑
j |x− bj |.

Let µ be a real parameter.
(a) Give a statistical interpretation to the following optimization problem:

minimize
∑
j

(|x− bj |+ µ(x− bj)) .

Hint: the special cases µ = 0,±1/2,±1 might help clarify the general
situation.

(b) Express the above problem as a linear programming problem.
(c) The parametric simplex method can be used to solve families of linear

programming problems indexed by a parameter µ (such as we have
here). Starting at µ = ∞ and proceeding to µ = −∞ one solves
all of the linear programs with just a finite number of pivots. Use the
parametric simplex method to solve the problems of the previous part
in the case where n = 4 and b1 = 1, b2 = 2, b3 = 4, and b4 = 8.

(d) Now consider the general case. Write down the dictionary that appears
in the k-th iteration and show by induction that it is correct.

12.11 Show that the L∞-norm is just the maximum of the absolute values. That
is,

lim
p→∞

‖x‖p = max
i
|xi|.

Notes

Gonin & Money (1989) and Dodge (1987) are two references on regression that
include discussion of both L2 and L1 regression. The standard reference on L1 re-
gression is Bloomfield & Steiger (1983).

Several researchers, including Smale (1983), Borgwardt (1982), Borgwardt (1987a),
Adler & Megiddo (1985), and Todd (1986), have studied the average number of iter-
ations of the simplex method as a function of m and/or n. The model discussed in
this chapter is similar to the sign-invariant model introduced by Adler & Berenguer
(1981).


