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problem with integer data, it can be solved efficiently using the simplex method to
compute a basic optimal solution, which the integrality theorem tells us will be integer
valued.

6.1. König’s Theorem. In addition to its importance in real-world optimization
problems, the integrality theorem also has many applications to the branch of mathe-
matics called combinatorics. We illustrate with just one example.

THEOREM 14.3. König’s Theorem. Suppose that there are n girls and n boys,
that every girl knows exactly k boys, and that every boy knows exactly k girls. Then n
marriages can be arranged with everybody knowing his or her spouse.

Before proving this theorem it is important to clarify its statement by saying that
the property of “knowing” is symmetric (for example, knowing in the biblical sense).
That is, if a certain girl knows a certain boy, then this boy also knows this girl.

PROOF. Consider a network with nodes g1, g2, . . . , gn, b1, b2, . . . , bn and an arc
from gi to bj if girl i and boy j know each other. Assign one unit of supply to each girl
node and a unit of demand to each boy node. Assign arbitrary objective coefficients to
create a well-defined network flow problem. The problem is guaranteed to be feasible:
just put a flow of 1/k on each arc (the polygamists in the group might prefer this
nonintegral solution). By the integrality theorem, the problem has an integer-valued
solution. Clearly, the flow on each arc must be either zero or one. Also, each girl
node is the tail of exactly one arc having a flow of one. This arc points to her intended
mate. �

Exercises

In solving the following problems, the network pivot tool can be used to check
your arithmetic:

www.princeton.edu/∼rvdb/JAVA/network/nettool/netsimp.html
14.1 Consider the following network flow problem:
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http://www.princeton.edu/~rvdb/JAVA/network/nettool/netsimp.html
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Numbers shown above the nodes are supplies (negative values represent de-
mands) and numbers shown above the arcs are unit shipping costs. The
darkened arcs form a spanning tree.
(a) Compute primal flows for each tree arc.
(b) Compute dual variables for each node.
(c) Compute dual slacks for each nontree arc.

14.2 Consider the tree solution for the following minimum cost network flow
problem:
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The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest–coefficient rule in the dual network simplex method,

what is the leaving arc?
(b) What is the entering arc?
(c) After one pivot, what is the new tree solution?

14.3 Consider the following network flow problem:
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The numbers above the nodes are supplies (negative values represent de-
mands) and numbers shown above the arcs are unit shipping costs. The
darkened arcs form a spanning tree.
(a) Compute primal flows for each tree arc.
(b) Compute dual variables for each node.
(c) Compute dual slacks for each nontree arc.

14.4 Consider the tree solution for the following minimum cost network flow
problem:
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The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest–coefficient rule in the primal network simplex method,

what is the entering arc?
(b) What is the leaving arc?
(c) After one pivot, what is the new tree solution?

14.5 Consider the tree solution for the following minimum cost network flow
problem:
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The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest–coefficient rule in the dual network simplex method,

what is the leaving arc?
(b) What is the entering arc?
(c) After one pivot, what is the new tree solution?

14.6 Solve the following network flow problem starting with the spanning tree
shown.
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The numbers displayed next to nodes are supplies(+)/demands(−). Num-
bers on arcs are costs. Missing data should be assumed to be zero. The bold
arcs represent an initial spanning tree.

14.7 Solve Exercise 2.11 using the self-dual network simplex method.

14.8 Using today’s date (MMYY) for the seed value, solve 10 problems using the
network simplex pivot tool:

www.princeton.edu/∼rvdb/JAVA/network/challenge/netsimp.html

14.9 Consider the following tree solution for a minimum cost network flow prob-
lem:
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As usual, bold arcs represent arcs on the spanning tree, numbers next to the
bold arcs are primal flows, numbers next to non-bold arcs are dual slacks,
and numbers next to nodes are dual variables.
(a) For what values of µ is this tree solution optimal?
(b) What are the entering and leaving arcs?
(c) After one pivot, what is the new tree solution?
(d) For what values of µ is the new tree solution optimal?

14.10 Consider the following tree solution for a minimum cost network flow prob-
lem:
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(a) For what values of µ is this tree solution optimal?
(b) What are the entering and leaving arcs?
(c) After one pivot, what is the new tree solution?
(d) For what values of µ is the new tree solution optimal?

14.11 Consider the following minimum cost network flow problem
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As usual, the numbers on the arcs represent the flow costs and numbers at
the nodes represent supplies (demands are shown as negative supplies). The
arcs shown in bold represent a spanning tree. If the solution corresponding
to this spanning tree is optimal prove it, otherwise find an optimal solution
using this tree as the initial spanning tree.

14.12 Suppose that a square submatrix of Ã is invertible. Show that the arcs cor-
responding to the columns of this submatrix form a spanning tree.

14.13 Show that a spanning tree on m nodes must have exactly m− 1 arcs.
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14.14 Define an algorithm that takes as input a network and either finds a spanning
tree or proves that the network is not connected.

14.15 Give an example of a minimum-cost network flow problem with all arc costs
positive and the following counterintuitive property: if the supply at a partic-
ular source node and the demand at a particular sink node are simultaneously
reduced by one unit, then the optimal cost increases.

14.16 Consider a possibly disconnected network (N ,A). Two nodes i and j in
N are said to be connected if there is a path from i to j (recall that paths
can traverse arcs backwards or forwards). We write i ∼ j if i and j are
connected.
(a) Show that “∼” defines an equivalence relation. That is, it has the fol-

lowing three properties:
(i) (reflexivity) for all i ∈ N , i ∼ i;

(ii) (symmetry) for all i, j ∈ N , i ∼ j implies that j ∼ i;
(iii) (transitivity) for all i, j, k ∈ N , i ∼ j and j ∼ k implies that

i ∼ k.
Using the equivalence relation, we can partition N into a collection of sub-
sets of equivalence classes N1,N2, . . . ,Nk such that two nodes are con-
nected if and only if they belong to the same subset. The number k is called
the number of connected components.
(b) Show that the rank of the node–arc incidence matrixA is exactlym−k

(recall that m is the number of rows of A).

14.17 One may assume without loss of generality that every node in a minimum
cost network flow problem has at least two arcs associated with it. Why?

14.18 The sum of the dual slacks around any cycle is a constant. What is that
constant?

14.19 Planar Networks. A network is called planar if the nodes and arcs can be
laid out on the two-dimensional plane in such a manner that no two arcs
cross each other (it is allowed to draw the arcs as curves if necessary). All
of the networks encountered so far in this chapter have been planar. Associ-
ated with each planar network is a geometrically defined dual network. The
purpose of this problem is to establish the following interesting fact:

A dual network simplex pivot is precisely a primal network simplex
method applied to the dual network.
Viewed geometrically, the nodes of a planar graph are called vertices

and the arcs are called edges. Consider a specific connected planar network.
If one were to delete the vertices and the edges from the plane, one would
be left with a disjoint collection of subsets of the plane. These subsets are
called faces. Note that there is one unbounded face. It is a face just like
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FIGURE 14.16. The primal network has nodes “a” through “f”.
The corresponding dual network has nodes “A” through “D” (node
“A” is “at infinity”). A primal spanning tree is shown. It consists
of five arcs: (a,b), (f,b), (b,e), (e,d), and (c,d). The corresponding
dual spanning tree consists of three arcs: (B,A), (A,C), and (D,A).
Primal costs are shown along the primal arcs and supplies/demands
are shown at the primal nodes.

the other bounded ones. An example of a connected planar network with its
faces labeled A through D is shown in Figure 14.16.

Dual nodes. Associated with each connected planar network is a dual
network defined by interchanging vertices and faces. That is, place a dual
vertex in the center of each primal face. Note: the dual vertex corresponding
to the unbounded primal face could be placed anywhere in the unbounded
face but we choose to put it at infinity. In this way, dual edges (defined next)
that have a head or a tail at this node can run off to infinity in any direction.

Dual arcs. Connect with a dual edge any pair of dual nodes whose
corresponding primal faces share an edge. Each dual edge crosses exactly
one primal edge. The directionality of the dual edge is determined as fol-
lows: first, place a vector along the corresponding primal edge pointing in
the direction of the primal arc, and then rotate it counterclockwise until it is
tangent to the dual edge. The vector now defines the direction for the dual
arc.
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Dual spanning tree. Consider a spanning tree on the primal network
and suppose that a primal–dual tree solution is given. We define a spanning
tree on the dual network as follows. A dual edge is on the dual network’s
spanning tree if and only if the corresponding primal edge is not on the
primal network’s spanning tree.

Dual flows and dual dual-slacks. The numerical arc data for the dual
network is inherited directly from the primal. That is, flows on the dual tree
arcs are exactly equal to the dual slacks on the associated primal nontree
arcs. And, the dual slacks on the the dual nontree arcs are exactly equal
to the primal flows on the associated primal tree arcs. Having specified
numerical data on the arcs of the dual network, it is fairly straightforward
to determine values for supplies/demands at the nodes and shipping costs
along the arcs that are consistent with these numerical values.

(a) Which of the following networks are planar:
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(a) (b) (c)

(b) A network is called complete if there is an arc between every pair of
nodes. If a complete network with m nodes is planar, then every net-
work with m nodes is planar. Prove it.

(c) Show that a nonplanar network must have 5 or more nodes.
(d) As always, letm denote the number of nodes and let n denote the num-

ber of arcs in a network. Let f denote the number of faces in a planar
network. Show by induction on f that m = n− f + 2.

(e) Show that the dual spanning tree defined above is in fact a spanning
tree.

(f) Show that a dual pivot for a minimum cost network flow problem de-
fined on the primal network is precisely the same as a primal pivot for
the corresponding network flow problem on the dual network.

(g) Using the cost and supply/demand information given for the primal
problem in Figure 14.16, write down the primal problem as a linear
programming problem.
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(h) Write down the dual linear programming problem that one derives al-
gebraically from the primal linear programming problem.

(i) Using the spanning tree shown in Figure 14.16, compute the primal
flows, dual variables, and dual slacks for the network flow problem
associated with the primal network.

(j) Write down the flow and slacks for the network flow problem associated
with the dual network.

(k) Find arc costs and node supplies/demands for the dual network that are
consistent with the flows and slacks just computed.

(l) Write down the linear programming problem associated with the net-
work flow problem on the dual network.

Notes

The classical reference is Ford & Fulkerson (1962). More recent works include
the books by Christofides (1975), Lawler (1976), Bazaraa et al. (1977), Kennington &
Helgason (1980), Jensen & Barnes (1980), Bertsekas (1991), and Ahuja et al. (1993).

The two “original” algorithms for solving minimum-cost network flow problems
are the network simplex method developed by Dantzig (1951a) and the primal–dual
method developed by Ford & Fulkerson (1958). The self-dual algorithm described
in this chapter is neither of these. In fact, it resembles the “out-of-kilter” method
described by Ford & Fulkerson (1962).


