Put

$$
\bar{f}=f(\bar{x}, \bar{w})
$$

and let

$$
\bar{P}=\{(x, w): A x+w=b, x \geq 0, w \geq 0, f(x, w) \geq \bar{f}\}
$$

Clearly, $\bar{P}$ is nonempty, since it contains $(\bar{x}, \bar{w})$. From the discussion above, we see that $\bar{P}$ is a bounded set.

This set is also closed. To see this, note that it is the intersection of three sets,

$$
\{(x, w): A x+w=b\} \cap\{(x, w): x \geq 0, w \geq 0\} \cap\{(x, w): f(x, w) \geq \bar{f}\}
$$

The first two of these sets are obviously closed. The third set is closed because it is the inverse image of a closed set, $[\bar{f}, \infty]$, under a continuous mapping $f$. Finally, the intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known theorem from real analysis about compact sets is that a continuous function on a nonempty compact set attains its maximum. This means that there exists a point in the compact set at which the function hits its maximum. Applying this theorem to $f$ on $\bar{P}$, we see that $f$ does indeed attain its maximum on $\bar{P}$, and this implies it attains its maximum on all of $\{(x, w): x>0, w>0\}$, since $\bar{P}$ was by definition that part of this domain on which $f$ takes large values (bigger than $\bar{f}$, anyway). This completes the proof.

We summarize our main result in the following corollary:
COROLLARY 17.3. If a primal feasible set (or, for that matter, its dual) has a nonempty interior and is bounded, then for each $\mu>0$ there exists a unique solution

$$
\left(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu}\right)
$$

to 17.6 .
Proof. Follows immediately from the previous theorem and Exercise 10.7 ,
The path $\left\{\left(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu}\right): \mu>0\right\}$ is called the primal-dual central path. It plays a fundamental role in interior-point methods for linear programming. In the next chapter, we define the simplest interior-point method. It is an iterative procedure that at each iteration attempts to move toward a point on the central path that is closer to optimality than the current point.

## Exercises

17.1 Compute and graph the central trajectory for the following problem:

$$
\left.\begin{array}{rl}
\operatorname{maximize} & -x_{1}+x_{2} \\
\text { subject to } & x_{2}
\end{array}\right)=1
$$

Hint: The primal and dual problems are the same - exploit this symmetry.
17.2 Let $\theta$ be a fixed parameter, $0 \leq \theta \leq \frac{\pi}{2}$, and consider the following problem:

$$
\begin{aligned}
\operatorname{maximize} & (\cos \theta) x_{1}+(\sin \theta) x_{2} \\
\text { subject to } & x_{1}
\end{aligned} \leq 1 .
$$

Compute an explicit formula for the central path $\left(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu}\right)$, and evaluate $\lim _{\mu \rightarrow \infty} x_{\mu}$ and $\lim _{\mu \rightarrow 0} x_{\mu}$.
17.3 Suppose that $\{x: A x \leq b, x \geq 0\}$ is bounded. Let $r \in \mathbb{R}^{n}$ and $s \in \mathbb{R}^{m}$ be vectors with positive elements. By studying an appropriate barrier function, show that there exists a unique solution to the following nonlinear system:

$$
\begin{aligned}
A x+w & =b \\
A^{T} y-z & =c \\
X Z e & =r \\
Y W e & =s \\
x, y, z, w & >0
\end{aligned}
$$

17.4 Consider the linear programming problem in equality form:

$$
\begin{align*}
& \operatorname{maximize} \sum_{j} c_{j} x_{j} \\
& \text { subject to }  \tag{17.8}\\
& \sum_{j} a_{j} x_{j}=b \\
& \\
& \quad x_{j} \geq 0, \quad j=1,2, \ldots, n
\end{align*}
$$

where each $a_{j}$ is a vector in $\mathbb{R}^{m}$, as is $b$. Consider the change of variables,

$$
x_{j}=\xi_{j}^{2}
$$

and the associated maximization problem:

$$
\begin{align*}
& \operatorname{maximize} \sum_{j} c_{j} \xi_{j}^{2}  \tag{17.9}\\
& \text { subject to } \sum_{j} a_{j} \xi_{j}^{2}=b
\end{align*}
$$

(note that the nonnegativity constraints are no longer needed). Let $V$ denote the set of basic feasible solutions to 17.8 , and let $W$ denote the set of points $\left(\xi_{1}^{2}, \xi_{2}^{2}, \ldots, \xi_{n}^{2}\right)$ in $\mathbb{R}^{n}$ for which $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is a solution to the first-order optimality conditions for 17.9 . Show that $V \subset W$. What does this say about the possibility of using (17.9) as a vehicle to solve 17.8?

