
EXERCISES 301

Put
f̄ = f(x̄, w̄)

and let
P̄ = {(x,w) : Ax+ w = b, x ≥ 0, w ≥ 0, f(x,w) ≥ f̄}.

Clearly, P̄ is nonempty, since it contains (x̄, w̄). From the discussion above, we see
that P̄ is a bounded set.

This set is also closed. To see this, note that it is the intersection of three sets,

{(x,w) : Ax+ w = b} ∩ {(x,w) : x ≥ 0, w ≥ 0} ∩ {(x,w) : f(x,w) ≥ f̄}.
The first two of these sets are obviously closed. The third set is closed because it is
the inverse image of a closed set, [f̄ ,∞], under a continuous mapping f . Finally, the
intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known theo-
rem from real analysis about compact sets is that a continuous function on a nonempty
compact set attains its maximum. This means that there exists a point in the compact
set at which the function hits its maximum. Applying this theorem to f on P̄ , we see
that f does indeed attain its maximum on P̄ , and this implies it attains its maximum
on all of {(x,w) : x > 0, w > 0}, since P̄ was by definition that part of this domain
on which f takes large values (bigger than f̄ , anyway). This completes the proof. �

We summarize our main result in the following corollary:

COROLLARY 17.3. If a primal feasible set (or, for that matter, its dual) has a
nonempty interior and is bounded, then for each µ > 0 there exists a unique solution

(xµ, wµ, yµ, zµ)

to (17.6).

PROOF. Follows immediately from the previous theorem and Exercise 10.7. �

The path {(xµ, wµ, yµ, zµ) : µ > 0} is called the primal–dual central path. It
plays a fundamental role in interior-point methods for linear programming. In the next
chapter, we define the simplest interior-point method. It is an iterative procedure that
at each iteration attempts to move toward a point on the central path that is closer to
optimality than the current point.

Exercises

17.1 Compute and graph the central trajectory for the following problem:

maximize −x1 + x2

subject to x2 ≤ 1

−x1 ≤ −1

x1, x2 ≥ 0.



302 17. THE CENTRAL PATH

Hint: The primal and dual problems are the same — exploit this symmetry.

17.2 Let θ be a fixed parameter, 0 ≤ θ ≤ π
2 , and consider the following problem:

maximize (cos θ)x1 + (sin θ)x2

subject to x1 ≤ 1

x2 ≤ 1

x1, x2 ≥ 0.

Compute an explicit formula for the central path (xµ, wµ, yµ, zµ), and eval-
uate limµ→∞ xµ and limµ→0 xµ.

17.3 Suppose that {x : Ax ≤ b, x ≥ 0} is bounded. Let r ∈ Rn and s ∈ Rm be
vectors with positive elements. By studying an appropriate barrier function,
show that there exists a unique solution to the following nonlinear system:

Ax+ w= b

AT y − z = c

XZe= r

Y We= s

x, y, z, w > 0.

17.4 Consider the linear programming problem in equality form:

(17.8)

maximize
∑
j cjxj

subject to
∑
j

ajxj = b

xj ≥ 0, j = 1, 2, . . . , n,

where each aj is a vector in Rm, as is b. Consider the change of variables,

xj = ξ2
j ,

and the associated maximization problem:

(17.9)
maximize

∑
j cjξ

2
j

subject to
∑
j ajξ

2
j = b

(note that the nonnegativity constraints are no longer needed). Let V denote
the set of basic feasible solutions to (17.8), and let W denote the set of
points (ξ2

1 , ξ
2
2 , . . . , ξ

2
n) in Rn for which (ξ1, ξ2, . . . , ξn) is a solution to the

first-order optimality conditions for (17.9). Show that V ⊂ W . What does
this say about the possibility of using (17.9) as a vehicle to solve (17.8)?


