EXERCISES

Put

$$\bar{f} = f(\bar{x}, \bar{w})$$

and let

$$\bar{P} = \{(x, w) : Ax + w = b, x \ge 0, w \ge 0, f(x, w) \ge \bar{f}\}.$$

Clearly, \overline{P} is nonempty, since it contains $(\overline{x}, \overline{w})$. From the discussion above, we see that \overline{P} is a bounded set.

This set is also closed. To see this, note that it is the intersection of three sets,

$$\{(x,w): Ax + w = b\} \cap \{(x,w): x \ge 0, w \ge 0\} \cap \{(x,w): f(x,w) \ge \overline{f}\}.$$

The first two of these sets are obviously closed. The third set is closed because it is the inverse image of a closed set, $[f, \infty]$, under a continuous mapping f. Finally, the intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known theorem from real analysis about compact sets is that a continuous function on a nonempty compact set attains its maximum. This means that there exists a point in the compact set at which the function hits its maximum. Applying this theorem to f on \overline{P} , we see that f does indeed attain its maximum on \overline{P} , and this implies it attains its maximum on all of $\{(x, w) : x > 0, w > 0\}$, since \overline{P} was by definition that part of this domain on which f takes large values (bigger than \overline{f} , anyway). This completes the proof. \Box

We summarize our main result in the following corollary:

COROLLARY 17.3. If a primal feasible set (or, for that matter, its dual) has a nonempty interior and is bounded, then for each $\mu > 0$ there exists a unique solution

$$(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu})$$

to (17.6).

PROOF. Follows immediately from the previous theorem and Exercise 10.7. \Box

The path $\{(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu}) : \mu > 0\}$ is called the *primal-dual central path*. It plays a fundamental role in interior-point methods for linear programming. In the next chapter, we define the simplest interior-point method. It is an iterative procedure that at each iteration attempts to move toward a point on the central path that is closer to optimality than the current point.

Exercises

17.1 Compute and graph the central trajectory for the following problem:

S

maximize
$$-x_1 + x_2$$

subject to $x_2 \leq 1$
 $-x_1 \leq -1$
 $x_1, x_2 \geq 0$

301

17. THE CENTRAL PATH

Hint: The primal and dual problems are the same — *exploit this symmetry.* **17.2** Let θ be a fixed parameter, $0 \le \theta \le \frac{\pi}{2}$, and consider the following problem:

maximize
$$(\cos \theta)x_1 + (\sin \theta)x_2$$

subject to $x_1 \le 1$
 $x_2 \le 1$
 $x_1, x_2 \ge 0.$

Compute an explicit formula for the central path $(x_{\mu}, w_{\mu}, y_{\mu}, z_{\mu})$, and evaluate $\lim_{\mu\to\infty} x_{\mu}$ and $\lim_{\mu\to0} x_{\mu}$.

17.3 Suppose that $\{x : Ax \le b, x \ge 0\}$ is bounded. Let $r \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$ be vectors with positive elements. By studying an appropriate barrier function, show that there exists a unique solution to the following nonlinear system:

$$Ax + w = b$$
$$A^{T}y - z = c$$
$$XZe = r$$
$$YWe = s$$
$$x, y, z, w > 0.$$

17.4 Consider the linear programming problem in equality form:

(17.8) maximize
$$\sum_{j} c_{j} x_{j}$$

subject to $\sum_{j} a_{j} x_{j} = b$
 $x_{j} \ge 0, \qquad j$

 $x_j \ge 0, \qquad j = 1, 2, \dots, n,$ where each a_j is a vector in \mathbb{R}^m , as is b. Consider the change of variables,

$$x_i = \xi_i^2,$$

and the associated maximization problem:

(17.9) maximize
$$\sum_{j} c_{j}\xi_{j}^{2}$$

subject to $\sum_{j} a_{j}\xi_{j}^{2} = b$

(note that the nonnegativity constraints are no longer needed). Let V denote the set of basic feasible solutions to (17.8), and let W denote the set of points $(\xi_1^2, \xi_2^2, \ldots, \xi_n^2)$ in \mathbb{R}^n for which $(\xi_1, \xi_2, \ldots, \xi_n)$ is a solution to the first-order optimality conditions for (17.9). Show that $V \subset W$. What does this say about the possibility of using (17.9) as a vehicle to solve (17.8)?

302