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Now we sum the bracketed partial sum of a geometric series to get
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Recalling that t̃ = t(1− δ) and dropping the second term in the numerator, we get

(1− t̃)k − (1− t)k

t− t̃
≤ (1− t̃)k

δt
.

Putting this all together, we see that

γ(k) ≤ (1− t̃)k
(
γ(0) +

M̃

δt

)
.

Denoting the parenthesized expression by M̄ completes the proof. �

Theorem 18.1 is only a partial convergence result because it depends on the as-
sumption that the step lengths remain bounded away from zero. To show that the
step lengths do indeed have this property requires that the algorithm be modified and
that the starting point be carefully selected. The details are rather technical and hence
omitted (see the Notes at the end of the chapter for references).

Also, before we leave this topic, note that the primal and dual infeasibilities go
down by a factor of 1 − t at each iteration, whereas the duality gap goes down by a
smaller amount 1 − t̃. The fact that the duality gap converges more slowly that the
infeasibilities is also readily observed in practice.

Exercises

18.1 Starting from (x,w, y, z) = (e, e, e, e), and using δ = 1/10, and r = 9/10,
compute (x,w, y, z) after one step of the path-following method for the
problem given in
(a) Exercise 2.3.
(b) Exercise 2.4.
(c) Exercise 2.5.
(d) Exercise 2.10.

18.2 Let {(xµ, wµ, yµ, zµ) : µ ≥ 0} denote the central trajectory. Show that

lim
µ→∞

bT yµ − cTxµ =∞.

Hint: look at (18.5).
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18.3 Consider a linear programming problem whose feasible region is bounded
and has nonempty interior. Use the result of Exercise 18.2 to show that the
dual problem’s feasible set is unbounded.

18.4 Scale invariance. Consider a linear program and its dual:

(P )

max cTx

s.t. Ax+ w = b

x, w ≥ 0

(D)

min bT y

s.t. AT y − z = c

y, z ≥ 0.

Let R and S be two given diagonal matrices having positive entries along
their diagonals. Consider the scaled reformulation of the original problem
and its dual:

(P̄ )

max (Sc)T x̄

s.t. RASx̄+ w̄ = Rb

x̄, w̄ ≥ 0

(D̄)

min (Rb)T ȳ

s.t. SATRȳ − z̄ = Sc

ȳ, z̄ ≥ 0.

Let (xk, wk, yk, zk) denote the sequence of solutions generated by the primal–
dual interior-point method applied to (P )–(D). Similarly, let (x̄k, w̄k, ȳk, z̄k)
denote the sequence of solutions generated by the primal–dual interior-point
method applied to (P̄ )–(D̄). Suppose that we have the following relations
among the starting points:

x̄0 = S−1x0, w̄0 = Rw0, ȳ0 = R−1y0, z̄0 = Sz0.

Show that these relations then persist. That is, for each k ≥ 1,

x̄k = S−1xk, w̄k = Rwk, ȳk = R−1yk, z̄k = Szk.

18.5 Homotopy method. Let x̄, ȳ, z̄, and w̄ be given componentwise positive
“initial” values for x, y, z, and w, respectively. Let t be a parameter between
0 and 1. Consider the following nonlinear system:

(18.12)

Ax+ w= tb+ (1− t)(Ax̄+ w̄)

AT y − z = tc+ (1− t)(AT ȳ − z̄)
XZe= (1− t)X̄Z̄e
Y We= (1− t)Ȳ W̄ e

x, y, z, w > 0.

(a) Use Exercise 17.3 to show that this nonlinear system has a unique so-
lution for each 0 ≤ t < 1. Denote it by (x(t), y(t), z(t), w(t)).

(b) Show that (x(0), y(0), z(0), w(0)) = (x̄, ȳ, z̄, w̄).
(c) Assuming that the limit

(x(1), y(1), z(1), w(1)) = lim
t→1

(x(t), y(t), z(t), w(t))
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exists, show that it solves the standard-form linear programming prob-
lem.

(d) The family of solutions (x(t), y(t), z(t), w(t)), 0 ≤ t < 1, describes
a curve in “primal–dual” space. Show that the tangent to this curve at
t = 0 coincides with the path-following step direction at (x̄, ȳ, z̄, w̄)
computed with µ = 0; that is,(
dx

dt
(0),

dy

dt
(0),

dz

dt
(0),

dw

dt
(0)

)
= (∆x,∆y,∆z,∆w),

where (∆x,∆y,∆z,∆w) is the solution to (18.1)–(18.4).

18.6 Higher-order methods. The previous exercise shows that the path-following
step direction can be thought of as the direction one gets by approximating
a homotopy path with its tangent line:

x(t) ≈ x(0) +
dx

dt
(0)t.

By using more terms of the Taylor’s series expansion, one can get a better
approximation:

x(t) ≈ x(0) +
dx

dt
(0)t+

1

2

d2x

dt2
(0)t2 + · · ·+ 1

k!

dkx

dtk
(0)tk.

(a) Differentiating the equations in (18.12) twice, derive a linear system for
(d2x/dt2(0), d2y/dt2(0), d2z/dt2(0), d2w/dt2(0)).

(b) Can the same technique be applied to derive linear systems for the
higher-order derivatives?

18.7 Linear Complementarity Problem. Given a k × k matrix M and a k-vector
q, a vector x is said to solve the linear complementarity problem if

−Mx+ z = q

XZe= 0

x, z ≥ 0

(note that the first equation can be taken as the definition of z).
(a) Show that the optimality conditions for linear programming can be ex-

pressed as a linear complementarity problem with

M =

[
0 −A
AT 0

]
.

(b) The path-following method introduced in this chapter can be extended
to cover linear complementarity problems. The main step in the deriva-
tion is to replace the complementarity condition XZe = 0 with a
µ-complementarity condition XZe = µe and then to use Newton’s
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method to derive step directions ∆x and ∆z. Carry out this procedure
and indicate the system of equations that define ∆x and ∆z.

(c) Give conditions under which the system derived above is guaranteed to
have a unique solution.

(d) Write down the steps of the path-following method for the linear com-
plementarity problem.

(e) Study the convergence of this algorithm by adapting the analysis given
in Section 18.5.

18.8 Consider again the L1-regression problem:

minimize ‖b−Ax‖1.
Complete the following steps to derive the step direction vector ∆x associ-
ated with the primal-dual affine-scaling method for solving this problem.
(a) Show that the L1-regression problem is equivalent to the following lin-

ear programming problem:

(18.13)
minimize eT (t+ + t−)

subject to Ax+ t+ − t− = b

t+, t− ≥ 0.

(b) Write down the dual of (18.13).
(c) Add slack and/or surplus variables as necessary to reformulate the dual

so that all inequalities are simple nonnegativities of variables.
(d) Identify all primal-dual pairs of complementary variables.
(e) Write down the nonlinear system of equations consisting of: (1) the

primal equality constraints, (2) the dual equality constraints, (3) all
complementarity conditions (using µ = 0 since we are looking for an
affine-scaling algorithm).

(f) Apply Newton’s method to the nonlinear system to obtain a linear sys-
tem for step directions for all of the primal and dual variables.

(g) We may assume without loss of generality that both the initial primal
solution and the initial dual solution are feasible. Explain why.

(h) The linear system derived above is a 6× 6 block matrix system. But it
is easy to solve most of it by hand. First eliminate those step directions
associated with the nonnegative variables to arrive at a 2 × 2 block
matrix system.

(i) Next, solve the 2× 2 system. Give an explicit formula for ∆x.
(j) How does this primal-dual affine-scaling algorithm compare with the

iteratively reweighted least squares algorithm defined in Section 12.5?



320 18. A PATH-FOLLOWING METHOD

18.9
(a) Let ξj , j = 1, 2, . . . , denote a sequence of real numbers between zero

and one. Show that
∏
j(1− ξj) = 0 if

∑
j ξj =∞.

(b) Use the result of part a to prove the following convergence result: if
the sequences ‖x(k)‖∞, k = 1, 2, . . . , and ‖y(k)‖∞, k = 1, 2, . . . , are
bounded and

∑
k θ

(k) =∞, then

lim
k→∞

‖ρ(k)‖1 = 0

lim
k→∞

‖σ(k)‖1 = 0

lim
k→∞

γ(k) = 0.

Notes

The path-following algorithm introduced in this chapter has its origins in a paper
by Kojima et al. (1989). Their paper assumed an initial feasible solution and therefore
was a true interior-point method. The method given in this chapter does not assume
the initial solution is feasible—it is a one-phase algorithm. The simple yet beautiful
idea of modifying the Kojima–Mizuno–Yoshise primal–dual algorithm to make it into
a one-phase algorithm is due to Lustig (1990).

Of the thousands of papers on interior-point methods that have appeared in the
last decade, the majority have included convergence proofs for some version of an
interior-point method. Here, we only mention a few of the important papers. The
first polynomial-time algorithm for linear programming was discovered by Khachian
(1979). Khachian’s algorithm is fundamentally different from any algorithm presented
in this book. Paradoxically, it proved in practice to be inferior to the simplex method.
N.K. Karmarkar’s pathbreaking paper (Karmarkar 1984) contained a detailed con-
vergence analysis. His claims, based on preliminary testing, that his algorithm is
uniformly substantially faster than the simplex method sparked a revolution in linear
programming. Unfortunately, his claims proved to be exaggerated, but nonetheless
interior-point methods have been shown to be competitive with the simplex method
and usually superior on very large problems. The convergence proof for a primal–dual
interior-point method was given by Kojima et al. (1989). Shortly thereafter, Monteiro
& Adler (1989) improved on the convergence analysis. Two recent survey papers,
Todd (1995) and Anstreicher (1996), give nice overviews of the current state of the
art. Also, a soon-to-be-published book by Wright (1996) should prove to be a valu-
able reference to the reader wishing more information on convergence properties of
these algorithms.

The homotopy method outlined in Exercise 18.5 is described in Nazareth (1986)
and Nazareth (1996). Higher-order path-following methods are described (differently)
in Carpenter et al. (1993).


