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FIGURE 4.3. The same data as before but plotted against the mini-
mum of m and n.

Exercises

In solving the following problems, the simple pivot tool can be used to check your
arithmetic:

www.princeton.edu/∼rvdb/JAVA/pivot/simple.html

4.1 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 4x1 + 5x2

subject to 2x1 + 2x2 ≤ 9

x1 ≤ 4

x2 ≤ 3

x1, x2 ≥ 0.

http://www.princeton.edu/~rvdb/JAVA/pivot/simple.html
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FIGURE 4.4. The same comparison as in Figure 4.3 but plot lin-
early rather than log-log. This version makes clear that the number
of pivots grows faster than linearly.

4.2 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 2x1 + x2

subject to 3x1 + x2 ≤ 3

x1, x2 ≥ 0.
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4.3 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 3x1 + 5x2

subject to x1 + 2x2 ≤ 5

x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0.

4.4 Solve the Klee–Minty problem (4.1) for n = 3.

4.5 Solve the 4 variable Klee-Minty problem using the online pivot tool:
www.princeton.edu/∼rvdb/JAVA/pivot/kleeminty.html

4.6 Consider the dictionary

ζ =−
n∑
j=1

εj10n−j
(

1

2
bj − xj

)
wi =

i−1∑
j=1

εiεj10i−j(bj − 2xj) + (bi − xi) i = 1, 2, . . . , n,

where the bi’s are as in the Klee–Minty problem (4.2) and where each εi is
±1. Fix k and consider the pivot in which xk enters the basis and wk leaves
the basis. Show that the resulting dictionary is of the same form as before.
How are the new εi’s related to the old εi’s?

4.7 Use the result of the previous problem to show that the Klee–Minty problem
(4.2) requires 2n − 1 iterations.

4.8 Consider the Klee–Minty problem (4.2). Suppose that bi = βi−1 for some
β > 1. Find the greatest lower bound on the set of β’s for which the this
problem requires 2n − 1 iterations.

4.9 Show that, for any integer n,

1

2n
22n ≤

(
2n

n

)
≤ 22n.

4.10 Consider a linear programming problem that has an optimal dictionary in
which exactly k of the original slack variables are nonbasic. Show that by
ignoring feasibility preservation of intermediate dictionaries this dictionary
can be arrived at in exactly k pivots. Don’t forget to allow for the fact that
some pivot elements might be zero. Hint: see Exercise 2.15.

http://www.princeton.edu/~rvdb/JAVA/pivot/kleeminty.html
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4.11 (MATLAB required.) Modify the MATLAB code posted at
www.princeton.edu/∼rvdb/LPbook/complexity/primalsimplex.m

so that data elements in A, b, and c are not rounded off to integers. Run the
code and compare the results to those shown in Figure 4.3.

4.12 (MATLAB required.) Modify the MATLAB code posted at
www.princeton.edu/∼rvdb/LPbook/complexity/primalsimplex.m

so that the output is a log-log plot of the number of pivots versus the product
m times n. Run the code and compare the results to those shown in Figure
4.3.

Notes

The first example of a linear programming problem in n variables and n con-
straints taking 2n − 1 iterations to solve was published by Klee & Minty (1972).
Several researchers, including Smale (1983), Borgwardt (1982), Borgwardt (1987a),
Adler & Megiddo (1985), and Todd (1986), have studied the average number of it-
erations. For a survey of probabilistic methods, the reader should consult Borgwardt
(1987b).

Roughly speaking, a class of problems is said to have polynomial complexity
if there is a polynomial p for which every problem of “size” n in the class can be
solved by some algorithm in at most p(n) operations. For many years it was unknown
whether linear programming had polynomial complexity. The Klee–Minty examples
show that, if linear programming is polynomial, then the simplex method is not the
algorithm that gives the polynomial bound, since 2n is not dominated by any polyno-
mial. In 1979, Khachian (1979) gave a new algorithm for linear programming, called
the ellipsoid method, which is polynomial and therefore established once and for all
that linear programming has polynomial complexity. The collection of all problem
classes having polynomial complexity is usually denoted by P . A class of problems
is said to belong to the class NP if, given a (proposed) solution, one can verify its
optimality in a number of operations that is bounded by some polynomial in the “size”
of the problem. Clearly, P ⊂ NP (since, if we can solve from scratch in a polyno-
mial amount of time, surely we can verify optimality at least that fast). An important
problem in theoretical computer science is to determine whether or not P is a strict
subset of NP .

The study of how difficult it is to solve a class of problems is called complexity
theory. Readers interested in pursuing this subject further should consult Garey &
Johnson (1977).

http://www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m
http://www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m

