FIGURE 4.3. The same data as before but plotted against the minimum of m and n.

Exercises

In solving the following problems, the simple pivot tool can be used to check your arithmetic:

www.princeton.edu/~rvdb/JAVA/pivot/simple.html

4.1 Compare the performance of the largest-coefficient and the smallest-index pivoting rules on the following linear program:

\[
\begin{align*}
\text{maximize} & \quad 4x_1 + 5x_2 \\
\text{subject to} & \quad 2x_1 + 2x_2 \leq 9 \\
& \quad x_1 \leq 4 \\
& \quad x_2 \leq 3 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]
4.2 Compare the performance of the largest-coefficient and the smallest-index pivoting rules on the following linear program:

\[
\begin{align*}
\text{maximize} & \quad 2x_1 + x_2 \\
\text{subject to} & \quad 3x_1 + x_2 \leq 3 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]
4.3 Compare the performance of the largest-coefficient and the smallest-index pivoting rules on the following linear program:

\[
\begin{align*}
\text{maximize} & \quad 3x_1 + 5x_2 \\
\text{subject to} & \quad x_1 + 2x_2 \leq 5 \\
& \quad x_1 \leq 3 \\
& \quad x_2 \leq 2 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]

4.4 Solve the Klee–Minty problem (4.1) for \(n = 3 \).

4.5 Solve the 4 variable Klee-Minty problem using the online pivot tool:

www.princeton.edu/~rvdb/JAVA/pivot/kleeminty.html

4.6 Consider the dictionary

\[
\begin{align*}
\zeta = & \sum_{j=1}^{n} \varepsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j \right) \\
wl_i = & \sum_{j=1}^{i-1} \varepsilon_i \varepsilon_j 10^{i-j} (b_j - 2x_j) + (b_i - x_i) \quad i = 1, 2, \ldots, n,
\end{align*}
\]

where the \(b_i \)'s are as in the Klee–Minty problem (4.2) and where each \(\varepsilon_i \) is \(\pm 1 \). Fix \(k \) and consider the pivot in which \(x_k \) enters the basis and \(w_k \) leaves the basis. Show that the resulting dictionary is of the same form as before. How are the new \(\varepsilon_i \)'s related to the old \(\varepsilon_i \)'s?

4.7 Use the result of the previous problem to show that the Klee–Minty problem (4.2) requires \(2^n - 1 \) iterations.

4.8 Consider the Klee–Minty problem (4.2). Suppose that \(b_i = \beta^{i-1} \) for some \(\beta > 1 \). Find the greatest lower bound on the set of \(\beta \)'s for which the this problem requires \(2^n - 1 \) iterations.

4.9 Show that, for any integer \(n \),

\[
\frac{1}{2n} 2^{2n} \leq \binom{2n}{n} \leq 2^{2n}.
\]

4.10 Consider a linear programming problem that has an optimal dictionary in which exactly \(k \) of the original slack variables are nonbasic. Show that by ignoring feasibility preservation of intermediate dictionaries this dictionary can be arrived at in exactly \(k \) pivots. Don’t forget to allow for the fact that some pivot elements might be zero. *Hint: see Exercise 2.75*
4.11 (MATLAB required.) Modify the MATLAB code posted at

www.princeton.edu/~rvdb/LPbook/complexity/primsimplex.m

so that data elements in A, b, and c are not rounded off to integers. Run the code and compare the results to those shown in Figure 4.3.

4.12 (MATLAB required.) Modify the MATLAB code posted at

www.princeton.edu/~rvdb/LPbook/complexity/primsimplex.m

so that the output is a log-log plot of the number of pivots versus the product m times n. Run the code and compare the results to those shown in Figure 4.3.

Notes

The first example of a linear programming problem in n variables and n constraints taking $2^n - 1$ iterations to solve was published by Klee & Minty (1972). Several researchers, including Smale (1983), Borgwardt (1982), Borgwardt (1987a), Adler & Megiddo (1985), and Todd (1986), have studied the average number of iterations. For a survey of probabilistic methods, the reader should consult Borgwardt (1987b).

Roughly speaking, a class of problems is said to have polynomial complexity if there is a polynomial p for which every problem of “size” n in the class can be solved by some algorithm in at most $p(n)$ operations. For many years it was unknown whether linear programming had polynomial complexity. The Klee–Minty examples show that, if linear programming is polynomial, then the simplex method is not the algorithm that gives the polynomial bound, since 2^n is not dominated by any polynomial. In 1979, Khachian (1979) gave a new algorithm for linear programming, called the ellipsoid method, which is polynomial and therefore established once and for all that linear programming has polynomial complexity. The collection of all problem classes having polynomial complexity is usually denoted by P. A class of problems is said to belong to the class NP if, given a (proposed) solution, one can verify its optimality in a number of operations that is bounded by some polynomial in the “size” of the problem. Clearly, $P \subset NP$ (since, if we can solve from scratch in a polynomial amount of time, surely we can verify optimality at least that fast). An important problem in theoretical computer science is to determine whether or not P is a strict subset of NP.

The study of how difficult it is to solve a class of problems is called complexity theory. Readers interested in pursuing this subject further should consult Garey & Johnson (1977).