
84 5. DUALITY THEORY

Exercises

In solving the following problems, the advanced pivot tool can be used to check
your arithmetic:

www.princeton.edu/∼rvdb/JAVA/pivot/advanced.html
5.1 What is the dual of the following linear programming problem:

maximize x1 − 2x2

subject to x1 + 2x2 − x3 + x4 ≥ 0

4x1 + 3x2 + 4x3 − 2x4 ≤ 3

−x1 − x2 + 2x3 + x4 = 1

x2, x3 ≥ 0 .

5.2 Illustrate Theorem 5.2 on the problem in Exercise 2.9.

5.3 Illustrate Theorem 5.2 on the problem in Exercise 2.1.

5.4 Illustrate Theorem 5.2 on the problem in Exercise 2.2.

5.5 Consider the following linear programming problem:

maximize 2x1 + 8x2 − x3 − 2x4

subject to 2x1 + 3x2 + 6x4 ≤ 6

−2x1 + 4x2 + 3x3 ≤ 1.5

3x1 + 2x2 − 2x3 − 4x4 ≤ 4

x1, x2, x3, x4 ≥ 0.

Suppose that, in solving this problem, you have arrived at the following
dictionary:

ζ = 3.5− 0.25w1 + 6.25x2 − 0.5w3 − 1.5x4

x1 = 3.0− 0.5w1 − 1.5x2 − 3.0x4

w2 = 0.0 + 1.25w1 − 3.25x2 − 1.5w3 + 13.5x4

x3 = 2.5− 0.75w1 − 1.25x2 + 0.5w3 − 6.5x4.

(a) Write down the dual problem.
(b) In the dictionary shown above, which variables are basic? Which are

nonbasic?
(c) Write down the primal solution corresponding to the given dictionary.

Is it feasible? Is it degenerate?

http://www.princeton.edu/~rvdb/JAVA/pivot/advanced.html
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(d) Write down the corresponding dual dictionary.
(e) Write down the dual solution. Is it feasible?
(f) Do the primal/dual solutions you wrote above satisfy the complemen-

tary slackness property?
(g) Is the current primal solution optimal?
(h) For the next (primal) pivot, which variable will enter if the largest co-

efficient rule is used? Which will leave? Will the pivot be degenerate?

5.6 Solve the following linear program:

maximize −x1 − 2x2

subject to −2x1 + 7x2 ≤ 6

−3x1 + x2 ≤ −1

9x1 − 4x2 ≤ 6

x1 − x2 ≤ 1

7x1 − 3x2 ≤ 6

−5x1 + 2x2 ≤ −3

x1, x2 ≥ 0.

5.7 Solve the linear program given in Exercise 2.3 using the dual–primal two-
phase algorithm.

5.8 Solve the linear program given in Exercise 2.4 using the dual–primal two-
phase algorithm.

5.9 Solve the linear program given in Exercise 2.6 using the dual–primal two-
phase algorithm.

5.10 Using today’s date (MMYY) for the seed value, solve 10 problems using the
dual phase I primal phase II simplex method:

www.princeton.edu/∼rvdb/JAVA/pivot/dp2phase.html

5.11 Using today’s date (MMYY) for the seed value, solve 10 problems using the
primal phase I dual phase II simplex method:

www.princeton.edu/∼rvdb/JAVA/pivot/pd2phase.html

5.12 For x and y in R, compute

max
x≥0

min
y≥0

(x− y) and min
y≥0

max
x≥0

(x− y)

and note whether or not they are equal.

http://www.princeton.edu/~rvdb/JAVA/pivot/dp2phase.html
http://www.princeton.edu/~rvdb/JAVA/pivot/pd2phase.html
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5.13 Consider the following process. Starting with a linear programming problem
in standard form,

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

first form its dual:

minimize
m∑
i=1

biyi

subject to
m∑
i=1

yiaij ≥ cj j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

Then replace the minimization in the dual with a maximization to get a new
linear programming problem, which we can write in standard form as fol-
lows:

maximize
m∑
i=1

biyi

subject to
m∑
i=1

−yiaij ≤ −cj j = 1, 2, . . . , n

yi ≥ 0 i = 1, 2, . . . ,m.

If we identify a linear programming problem with its data, (aij , bi, cj), the
above process can be thought of as a transformation T on the space of data
defined by

(aij , bi, cj)
T−→ (−aji,−cj , bi).

Let ζ∗(aij , bi, cj) denote the optimal objective function value of the standard-
form linear programming problem having data (aij , bi, cj). By strong dual-
ity together with the fact that a maximization dominates a minimization, it
follows that

ζ∗(aij , bi, cj) ≤ ζ∗(−aji,−cj , bi).
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Now if we repeat this process, we get

(aij , bi, cj)
T→ (−aji,−cj , bi)
T→ (aij ,−bi,−cj)
T→ (−aji, cj ,−bi)
T→ (aij , bi, cj)

and hence that

ζ∗(aij , bi, cj) ≤ ζ∗(−aji,−cj , bi)
≤ ζ∗(aij ,−bi,−cj)
≤ ζ∗(−aji, cj ,−bi)
≤ ζ∗(aij , bi, cj).

But the first and the last entry in this chain of inequalities are equal. There-
fore, all these inequalities would seem to be equalities. While this outcome
could happen sometimes, it certainly isn’t always true. What is the error in
this logic? Can you state a (correct) nontrivial theorem that follows from
this line of reasoning? Can you give an example where the four inequalities
are indeed all equalities?

5.14 Consider the following variant of the resource allocation problem:

(5.17)

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi i = 1, 2, . . . ,m

0 ≤ xj ≤ uj j = 1, 2, . . . , n.

As usual, the cj’s denote the unit prices for the products and the bi’s denote
the number of units on hand for each raw material. In this variant, the uj’s
denote upper bounds on the number of units of each product that can be
sold at the set price. Now, let’s assume that the raw materials have not
been purchased yet and it is part of the problem to determine the bi’s. Let
pi, i = 1, 2, . . . ,m denote the price for raw material i. The problem then
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becomes an optimization over both the xj’s and the bi’s:

maximize
n∑
j=1

cjxj −
m∑
i=1

pibi

subject to
n∑
j=1

aijxj − bi ≤ 0 i = 1, 2, . . . ,m

0 ≤ xj ≤ uj j = 1, 2, . . . , n

bi ≥ 0 i = 1, 2, . . . ,m.

(a) Show that this problem always has an optimal solution.
(b) Let y∗i (b), i = 1, 2, . . . ,m, denote optimal dual variables for the origi-

nal resource allocation problem (5.17). Note that we’ve explicitly indi-
cated that these dual variables depend on the b’s. Also, we assume that
problem (5.17) is both primal and dual non-degenerate so the y∗i (b) is
uniquely defined. Show that the optimal value of the bi’s, call them
b∗i ’s, satisfy

y∗i (b∗) = pi.

Hint: You will need to use the fact that, for resource allocation prob-
lems, we have aij ≥ 0 for all i, and all j.

5.15 Consider the following linear program:

maximize
n∑
j=1

pjxj

subject to
n∑
j=1

qjxj ≤ β

xj ≤ 1 j = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n.

Here, the numbers pj , j = 1, 2, . . . , n are positive and sum to one. The same
is true of the qj’s:

n∑
j=1

qj = 1

qj > 0.

Furthermore, assume that
p1

q1
<
p2

q2
< · · · < pn

qn

and that the parameter β is a small positive number. Let k = min{j :
qj+1 + · · · + qn ≤ β}. Let y0 denote the dual variable associated with the
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constraint involving β, and let yj denote the dual variable associated with
the upper bound of 1 on variable xj . Using duality theory, show that the
optimal values of the primal and dual variables are given by

xj =


0 j < k
β−qk+1−···−qn

qk
j = k

1 j > k

yj =


pk
qk

j = 0

0 0 < j ≤ k
qj

(
pj
qj
− pk

qk

)
j > k

See Exercise 1.3 for the motivation for this problem. (Note: The set of
indices defining the integer k is never empty. To see this, note that for j =
n − 1 the condition is qn ≤ β, which may or may not be true. But, for
j = n, the sum on the left-hand side contains no terms and so the condition
is 0 ≤ β, which is always true. Hence, the sum always contains at least one
element... the number n.)

5.16 Diet Problem. An MIT graduate student was trying to make ends meet on a
very small stipend. He went to the library and looked up the National Re-
search Council’s publication entitled “Recommended Dietary Allowances”
and was able to determine a minimum daily intake quantity of each essen-
tial nutrient for a male in his weight and age category. Let m denote the
number of nutrients that he identified as important to his diet, and let bi for
i = 1, 2, . . . ,m denote his personal minimum daily requirements. Next, he
made a list of his favorite foods (which, except for pizza and due mostly
to laziness and ineptitude in the kitchen, consisted almost entirely of frozen
prepared meals). He then went to the local grocery store and made a list of
the unit price for each of his favorite foods. Let us denote these prices as cj
for j = 1, 2, . . . , n. In addition to prices, he also looked at the labels and
collected information about how much of the critical nutrients are contained
in one serving of each food. Let us denote by aij the amount of nutrient
i contained in food j. (Fortunately, he was able to call his favorite pizza
delivery service and get similar information from them.) In terms of this
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information, he formulated the following linear programming problem:

minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

Formulate the dual to this linear program. Can you introduce another person
into the above story whose problem would naturally be to solve the dual?

5.17 Saddle points. A function h(y) defined for y ∈ R is called strongly convex
if
• h′′(y) > 0 for all y ∈ R,
• limy→−∞ h′(y) = −∞, and
• limy→∞ h′(y) =∞.

A function h is called strongly concave if−h is strongly convex. Let π(x, y),
be a function defined for (x, y) ∈ R2 and having the following form

π(x, y) = f(x)− xy + g(y),

where f is strongly concave and g is strongly convex. Using elementary
calculus

1. Show that there is one and only one point (x∗, y∗) ∈ R2 at which the
gradient of π,

∇π =

[
∂π/∂x

∂π/∂y

]
,

vanishes. Hint: From the two equations obtained by setting the deriva-
tives to zero, derive two other relations having the form x = φ(x) and
y = ψ(y). Then study the functions φ and ψ to show that there is one
and only one solution.

2. Show that

max
x∈R

min
y∈R

π(x, y) = π(x∗, y∗) = min
y∈R

max
x∈R

π(x, y),

where (x∗, y∗) denotes the “critical point” identified in part 1 above.
(Note: Be sure to check the signs of the second derivatives for both the
inner and the outer optimizations.)

Associated with each strongly convex function h is another function, called
the Legendre transform of h and denoted by Lh, defined by

Lh(x) = max
y∈R

(xy − h(y)), x ∈ R.

3. Using elementary calculus, show that Lh is strongly convex.
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4. Show that

max
x∈R

min
y∈R

π(x, y) = max
x∈R

(f(x)− Lg(x))

and that

min
y∈R

max
x∈R

π(x, y) = min
y∈R

(g(y) + L−f (−y)).

5. Show that the Legendre transform of the Legendre transform of a func-
tion is the function itself. That is,

LLh(z) = h(z) for all z ∈ R.
Hint: This can be proved from scratch but it is easier to use the result
of part 2 above.

Notes

The idea behind the strong duality theorem can be traced back to conversations
between G.B. Dantzig and J. von Neumann in the fall of 1947, but an explicit state-
ment did not surface until the paper of Gale et al. (1951). The term primal problem
was coined by G.B. Dantzig’s father, T. Dantzig. The dual simplex method was first
proposed by Lemke (1954).

The solution to Exercise 5.13 (which is left to the reader to supply) suggests that
a random linear programming problem is infeasible with probability 1/4, unbounded
with probability 1/4, and has an optimal solution with probability 1/2.


