EXERCISES

Exercises

In solving the following problems, the advanced pivot tool can be used to check your arithmetic:

www.princeton.edu/~rvdb/JAVA/pivot/advanced.html

7.1 The final dictionary for

is

$\zeta = 1$	2.4 - 1	$.2x_1 -$	$-0.2x_5 - 0.9x_6 - 2.8x_4$
$x_2 =$	6 –	x_1	$-0.5x_6 - 2x_4$
$x_3 =$	0.4 - 0	$.2x_1 -$	$-0.2x_5 + 0.1x_6 + 0.2x_4$
$x_7 = 1$	1.2 - 1	$.6x_1 - $	$+0.4x_5+0.3x_6+1.6x_4.$

(the last three variables are the slack variables).

(a) What will be an optimal solution to the problem if the objective function is changed to

 $3x_1 + 2x_2 + x_3 + x_4?$

(b) What will be an optimal solution to the problem if the objective function is changed to

$$x_1 + 2x_2 + 0.5x_3 + x_4?$$

- (c) What will be an optimal solution to the problem if the second constraint's right-hand side is changed to 26?
- **7.2** For each of the objective coefficients in the problem in Exercise 7.1, find the range of values for which the final dictionary will remain optimal.
- **7.3** Consider the following dictionary which arises in solving a problem using the self-dual simplex method:

$\zeta = -$	-3	- (-	$-1+2\mu)x_1-(3)$	$(-\mu)x_3$
$x_2 = -$	-1+	$\mu +$	$x_1 -$	x_3
$x_4 = -$	-4+	$3\mu +$	$3x_1 - $	$2x_3$
$x_{5} =$	2	+	$x_1 +$	x_3 .

(a) For which values of μ is the current dictionary optimal?

- (b) For the next pivot in the self-dual simplex method, identify the entering and the leaving variable.
- **7.4** Solve the linear program given in Exercise 2.3 using the self-dual simplex method. *Hint: It is easier to use dictionary notation than matrix notation.*
- **7.5** Solve the linear program given in Exercise 2.4 using the self-dual simplex method. *Hint: It is easier to use dictionary notation than matrix notation.*
- **7.6** Solve the linear program given in Exercise 2.6 using the self-dual simplex method. *Hint: It is easier to use dictionary notation than matrix notation.*
- **7.7** Using today's date (MMYY) for the seed value, solve 10 problems using the self-dual simplex method:

www.princeton.edu/~rvdb/JAVA/pivot/pd1phase.html

7.8 Use the self-dual simplex method to solve the following problem:

maximize
$$3x_1 - x_2$$

subject to $x_1 - x_2 \le 1$
 $-x_1 + x_2 \le -4$
 $x_1, x_2 \ge 0.$

- **7.9** Let P_{μ} denote the perturbed primal problem (with perturbation μ). Show that if P_{μ} is infeasible, then $P_{\mu'}$ is infeasible for every $\mu' \leq \mu$. State and prove an analogous result for the perturbed dual problem.
- **7.10** Using the notation of Figure 7.1 state precise conditions for detecting infeasibility and/or unboundedness in the self-dual simplex method.
- **7.11** Consider the following one parameter family of linear programming problems (parametrized by μ):

$$\max (4 - 4\mu)x_0 - 2x_1 - 2x_2 - 2x_3 - 2x_4$$

s.t.
$$x_0 - x_1 \leq 1$$

$$x_0 - x_2 \leq 2$$

$$x_0 - x_3 \leq 4$$

$$x_0 - x_4 \leq 8$$

$$x_0, x_1, x_2, x_3, x_4 \geq 0.$$

Starting from $\mu = \infty$, use the parametric simplex method to decrease μ as far as possible. Don't stop at $\mu = 0$. If you cannot get to $\mu = -\infty$, explain why. *Hint: the pivots are straight forward and, after the first couple, a clear*

NOTES

pattern should emerge which will make the subsequent pivots easy. Clearly indicate the range of μ values for which each dictionary is optimal.

Notes

Parametric analysis has its roots in Gass & Saaty (1955). G.B. Dantzig's classic book (Dantzig 1963) describes the self-dual simplex method under the name of the *self-dual parametric simplex method*. It is a special case of "Lemke's algorithm" for the linear complementarity problem (Lemke 1965) (see Exercise 18.7). Smale (1983) and Borgwardt (1982) were first to realize that the parametric self-dual simplex method is amenable to probabilistic analysis. For a more recent discussion of homotopy methods and the parametric self-dual simplex method, see Nazareth (1986) and Nazareth (1987).