PRINCETON UNIVERSITY

ORF 307: Lecture 10

Linear Programming: Chapter 7 Parametric Self-Dual Simplex Method

Robert Vanderbei

March 26, 2019

Slides last edited on March 25, 2019

An Example

$$
\begin{aligned}
\operatorname{maximize}-3 x_{1}+11 x_{2}+2 x_{3} & \\
\text { subj. to }-x_{1}+3 x_{2} & \leq 5 \\
3 x_{1}+3 x_{2} & \leq 4 \\
-3 x_{2}+2 x_{3} & \leq 6 \\
& \leq 5 x_{3}
\end{aligned} \begin{aligned}
\leq & x_{1}, x_{2}, x_{3}
\end{aligned} \geq 0 .
$$

Initial Dictionary:

$$
\begin{array}{rlrl}
\zeta & = & -3 x_{1}+11 x_{2}+2 x_{3} \\
\hline w_{1} & =5+3 x_{1}-3 x_{2} \\
w_{2} & =4-3 x_{1}-3 x_{2} \\
w_{3} & =6 & -3 x_{2}-2 x_{3} \\
w_{4} & =-4+3 x_{1} & +5 x_{3}
\end{array}
$$

Note: neither primal nor dual feasible.

Perturb

Introduce a parameter μ and perturb:

$$
\begin{aligned}
& \zeta=\quad-3 x_{1}+11 x_{2}+2 x_{3} \\
& w_{1}=5+\mu+\begin{aligned}
-\mu x_{1}-\mu x_{2}-\mu x_{3} \\
x_{1}-3 x_{2}
\end{aligned} \\
& w_{2}=4+\mu-3 x_{1}-3 x_{2} \\
& w_{3}=6+\mu \quad-3 x_{2}-2 x_{3} \\
& w_{4}=-4+\mu+3 x_{1}+5 x_{3}
\end{aligned}
$$

For μ large, dictionary is optimal.

Question: For which μ values is dictionary optimal?

Answer:

$$
\begin{aligned}
-3-\mu \leq 0 \\
11-\mu \leq 0 * \\
2-\mu \leq 0 * \\
\hline 5+\mu \geq 0 \\
4+\mu \geq 0 \\
6+\mu \geq 0 \\
-4+\mu \geq 0 *
\end{aligned}
$$

Note: only those marked with $\left({ }^{*}\right)$ give inequalities that omit $\mu=0$.

Tightest:

$$
\mu \geq 11
$$

Achieved by: objective row perturbation on x_{2}.

Let x_{2} enter.

Do ratio test using current lowest μ value, i.e. $\mu=11$:

$$
\begin{aligned}
5+11-3 x_{2} & \geq 0 \\
4+11-3 x_{2} & \geq 0 \\
6+11-3 x_{2} & \geq 0 \\
-4+11 & \geq 0
\end{aligned}
$$

Tightest:

$$
4+11-3 x_{2} \geq 0 .
$$

Achieved by: constraint containing basic variable w_{2}.

Let w_{2} leave.

$$
\begin{aligned}
& \zeta=\frac{44}{3}+\frac{11}{3} \mu-14 x_{1}-\frac{11}{3} w_{2}+2 x_{3} \\
& -\frac{4}{3} \mu-\frac{1}{3} \mu^{2}+\frac{1}{3} \mu w_{2}-\mu x_{3} \\
& w_{1}=1+4 x_{1}+\quad w_{2} \\
& x_{2}=\frac{4}{3}+\frac{1}{3} \mu-x_{1}-\frac{1}{3} w_{2} \\
& w_{3}=2+3 x_{1}+w_{2}-2 x_{3} \\
& w_{4}=-4+\mu+3 x_{1}+5 x_{3}
\end{aligned}
$$

Advanced Pivot Tool

Using the advanced pivot tool, the original and current dictionaries are:

Current Dictionary:

Current Dictionary:

Second Pivot

Here's the current dictionary:

Current Dictionary:

Question: For which μ values is this dictionary optimal? Answer:

$$
\begin{aligned}
-14 & \leq 0 \\
-\frac{11}{3}+\frac{1}{3} \mu & \leq 0 \\
2-\mu & \leq 0 * * \\
& \geq 0 \\
\frac{4}{3}+\frac{1}{3} \mu & \geq 0 \\
2 & \geq 0 \\
-4+\mu & \geq 0
\end{aligned} *
$$

Tightest lower bound: $\mu \geq 4$.
Achieved by: constraint containing basic variable w_{4}. Let w_{4} leave.

Second Pivot-Continued

Who shall enter?
Recall the current dictionary:
Current Dictionary:

Do dual-type ratio test using current lowest μ value, i.e. $\mu=4$:

$$
\begin{aligned}
14+0 \cdot 4-3 y_{4} & \geq 0 \\
\frac{11}{3}-\frac{1}{3} \cdot 4 & \geq 0 \\
-2+1 \cdot 4-5 y_{4} & \geq 0
\end{aligned}
$$

Tightest: $-2+1 \cdot 4-5 y_{4} \geq 0$.
Achieved by: objective term containing nonbasic variable x_{3}. Let x_{3} enter.

Third Pivot

The current dictionary is:

Current Dictionary:

Question: For which μ is dictionary optimal? Answer:

$$
\begin{aligned}
-\frac{76}{5}+\frac{3}{5} \mu & \leq 0 \\
-\frac{11}{3}+\frac{1}{3} \mu & \geq 0 \\
\frac{2}{5}-\frac{1}{5} \mu & \leq 0 * \\
& \frac{1}{3}+\frac{1}{3} \mu \geq 0 \\
\frac{2}{5}+\frac{2}{5} \mu & \geq 0 \\
\frac{4}{5}-\frac{1}{5} \mu & \geq 0
\end{aligned}
$$

Tightest lower bound: $\mu \geq 2$.
Achieved by: objective term containing nonbasic variable w_{4}. Let w_{4} enter.

Third Pivot-Continued

Who shall leave? Recall the current dictionary:
Current Dictionary:

Do primal-type ratio test using current lowest μ value, i.e. $\mu=2$:

$$
\begin{aligned}
1+0 \cdot 2 & \geq 0 \\
\frac{4}{3}+\frac{1}{3} \cdot 2 & \geq 0 \\
\frac{2}{5}+\frac{2}{5} \cdot 2-\frac{2}{5} w_{4} & \geq 0 \\
\frac{4}{5}-\frac{1}{5} \cdot 2+\frac{1}{5} w_{4} & \geq 0
\end{aligned}
$$

Tightest: $\frac{2}{5}+\frac{2}{5} \cdot 2-\frac{2}{5} w_{4} \geq 0$.
Achieved by: constraint containing basic variable w_{3}. Let w_{3} leave.

Fourth Pivot

The current dictionary is:

Current Dictionary:

It's optimal! Also, the range of μ values includes $\mu=0$:

$$
\begin{aligned}
-11-\frac{3}{2} \mu & \leq 0 \\
-\frac{8}{3}-\frac{1}{6} \mu & \leq 0 \\
-1+\frac{1}{2} \mu & \leq 0 \\
& \frac{1}{3}+\frac{1}{3} \mu
\end{aligned}
$$

That is, $-1 \leq \mu \leq 2$.
Range of μ values is shown at bottom of pivot tool. Invalid ranges are highlighted in yellow.

- Freedom to pick perturbation as you like.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed (next lecture).
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed (next lecture).
- In some real-world problems, a "natural" perturbation exists (later).
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed (next lecture).
- In some real-world problems, a "natural" perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

AMPL Code

```
# generate random problem with an optimal solution
let {i in 1..m, j in 1..n} A[i,j]:=round(sigma*Normal01());
let {i in 1..m} w[i] := round(sigma*Uniform01());
let {j in 1..n} x[j] := round(sigma*Uniform01());
let {i in 1..m} y[i] := round(sigma*Uniform01());
let {j in 1..n} z[j] := round(sigma*Uniform01());
let {i in 1..m} b[i] := sum {j in 1..n} A[i,j]*x[j] + w[i];
let {j in 1..n} c[j] := sum {i in 1..m} A[i,j]*y[i] - z[j];
let {i in 1..m} bb[i] := sigma*Uniform01();
let {j in 1..n} cc[j] := -sigma*Uniform01();
let {i in 1..m, j in 1..n} A[i,j] := -A[i,j];
repeat while forever {
    # find entering (or leaving) variable
    let mu := -1/eps;
    let row := -1;
    let col := -1;
    for {j in 1..n} {
        let tmp := -c[j]/cc[j];
        if (c[j] > eps && tmp > mu) then {
            let col := j;
            let row := -1;
            let mu := tmp;
        }
    }
    for {i in 1..m} {
        let tmp := -b[i]/bb[i];
        if (b[i] < -eps && tmp > mu) then {
            let row := i;
            let col := -1;
            let mu := tmp;
        }
    }
```

```
# if none, declare optimal
if (mu <= eps) then {
        let opt := 1; # optimal;
        break;
}
# find leaving (or entering) variable
if (row == -1) then {
    let minratio := 1/eps;
    for {i in 1..m} {
        if (A[i,col] < -eps) then {
            if (-(b[i]+mu*bb[i])/A[i,col]
                                    < minratio) then {
                let minratio := -(b[i]+mu*bb[i])/A[i,col];
                let row := i;
            }
        }
    }
    if minratio >= 1/eps then {
                let opt := -1; # dual infeas
                break;
    }
} else if (col == -1) then {
    let minratio := 1/eps;
    for {j in 1..n} {
        if (A[row,j] > eps) then {
            if (-(c[j]+mu*cc[j])/A[row,j] < minratio) then {
                let minratio := - (c[j]+mu*cc[j])/A[row,j];
                let col := j;
            }
        }
    }
    if minratio == 1/eps then {
                let opt := -1; # primal infeas
                break;
    }
}
```

```
    let {j in 1..n} Arow[j] := A[row,j];
    let {i in 1..m} Acol[i] := A[i,col];
    let a := A[row,col];
    let {i in 1..m, j in 1..n} A[i,j] := A[i,j] - Acol[i]*Arow[j]/a;
    let {j in 1..n} A[row,j] := -Arow[j]/a;
    let {i in 1..m} A[i,col] := Acol[i]/a;
    let A[row,col] := 1/a;
    let brow := b[row];
    let {i in 1..m} b[i] := b[i] - brow*Acol[i]/a;
    let b[row] := -brow/a;
    let ccol := c[col];
    let {j in 1..n} c[j] := c[j] - ccol*Arow[j]/a;
    let c[col] := ccol/a;
    let brow := bb[row];
    let {i in 1..m} bb[i] := bb[i] - brow*Acol[i]/a;
    let bb[row] := -brow/a;
    let ccol := cc[col];
    let {j in 1..n} cc[j] := cc[j] - ccol*Arow[j]/a;
    let cc[col] := ccol/a;
    let jj := nonbasics[col];
    let ii := basics[row];
    let basics[row] := jj;
    let nonbasics[col] := ii;
    let iter := iter+1;
} # the end of forever
```

Thought experiment:

- μ starts at ∞.
- In reducing μ, there are $n+m$ barriers.
- At each iteration, one barrier is passed-the others move about randomly.
- To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take $(m+n) / 2$ iterations.

