ORF 307: Lecture 10

Linear Programming: Chapter 7
Parametric Self-Dual Simplex Method

Robert Vanderbei

March 26, 2019

Slides last edited on March 25, 2019

ORFE Oper: ton Re . .
Financial Engin https://vanderbei.princeton.edu

https://vanderbei.princeton.edu

An Example

maximize —3x; + 1llzy + 213

SUb_j. to —x; + 35E2 S 5)
3r; + 31, < 4

3332 + 2.173 < §

—3331 — 51’3 S —4

Ly, To, T3 Z 0.

Initial Dictionary:

C = —3371 + 115(72 + 21133
w, = 5 + ry — 31’2
Wy = 4 — 3.5131 — 31’2
W3 = § - 3332 - 2273
Wy = —4 + 3.271 + 5563

Note: neither primal nor dual feasible.

Introduce a parameter 1 and perturb:

(= -3z + 11 29 + 2 x5
—HTT — PPy — T3

w, = 5 + pu + Ty — 3%

Wy = 4 + ono— 31’1 — S.TQ

Wy = 6 + v — 3.5172 — 21133

wy = —4 + pu + 321 + Dxy

For ;1 large, dictionary is optimal.

Question: For which p values is dictionary optimal?

Answer:

—_
—_

I

* *x

S
+ + 4+ 4| |

RS ST S S i S S
VIV IVIVIIA A TA
O OO o

—4

Note: only those marked with (*) give inequalities that omit p = 0.

Tightest:
> 11

Achieved by: objective row perturbation on .

Let x5 enter.

Do ratio test using current lowest u value, i.e. p = 11:

5 4+ 11 — 3z > 0
4 + 11 — 329 > 0
6 + 11 — 3z > 0
—4 + 11 > 0

Tightest:
4411 — 32, > 0.

Achieved by: constraint containing basic variable ws.

Let w, leave.

After the pivot:

(=% + Hp — Mo — % w + 2 3
— = g + gHwy —

w; = 1 + 4dx, + Wo

T S+ i = m — iw

wy = 2 + 3x; + wy — 213

wy = —4 4+ u + 31 + Dxs

Advanced Pivot Tool

Using the advanced pivot tool, the original and current dictionaries are:

Current Dictionary:

maximize { = 0 1} -3 X1 + 1 X2 + 2 X3
+ 0 Moo+ 0 Mz oo+ -1 Mo X + -1 M X2 + -1 M X3

Wi = 5 + 1 [T -1 X1 - 3 Xz - 0 X3

Wa = 4 + 1 M- 3 X1 - 3 X2 - 0 X3

W3 = 6 + 1 [T 0 X: - 3 Xa - 2 X3

Wa = -4 + 1 [T -3 X1 - 0 Xz - -5 X3

X1, Xz, Xz, Wi, Wz, W3, Wa = 0
M=spu=s oo
Current Dictionary:

maximize { = 44(3 + /3 n + -14 X1 + -11/3 W2 o+ 2 X3
+ SAIS)+ -2 p2 o+ 0 B X + /3 1w, + <1 U X3

Wy = 1 + 0O u - -4 X1 - -1 w, - 0 X3

X2 = 4/3 + 2 u o - 1 X1 - 1/3 Wy - 0 X3

W3 = 2 + 0O W - -3 X1 - -1 Wy - 2 X3

Wy = -4 + T M - -3 X1 - 0 W, - -5 X3

Here's the current dictionary:

Current Dictionary:

maximize ¢ = 443 + /2 n + -14 X1 + -11/3 W, o+ 2 Xa
+ A2 m o+ 13 w2 o+ 0 K X + 1/3 1 ow, + -1 U X3

Wy = 1 + 0O u - -4 X1 - -1 w, - 0 X3

X2 = 4/3 + 12 - 1 X1 - 1/3 W, - 0 X3

W3 = 2 + 0O u - -3 X1 - -1 Wy - 2 X3

Wy = -4 + T M - -3 X1 - 0 Wy - -5 X3

X1, X2, Xa, Wiy, Wz, W3, Wg = 0

d=ps= 1

Question: For which 1 values is this dictionary optimal? Answer:

14 <0 1 >0
11 | 1 4 1
BEREGI stak = 0
2— pu < 0 % 2 >0
—4+ p > 0 %

Tightest lower bound: u > 4.

Achieved by: constraint containing basic variable w,. Let w, leave. 7

Second Pivot—Continued

Who shall enter?

Recall the current dictionary:

Current Dictionary:

maximize ¢ = 443 + /2 n + -14 X1 + -11/3 W, o+ 2 Xa
+ A2 m o+ 13 w2 o+ 0 K X + 1/3 1 ow, + -1 U X3

Wi = 1 + 0O u -4 X1 - -1 Wy - 0 X3

X2 = 4/3 + 12 1 X1 - 1/3 Wy - 0 X3

W3 = 2 + 0O u -3 X1 - -1 Wy - 2 X3

Wy = -4 + T M -3 X1 - 0 Wy - -5 X3

X1, X2, Xa, Wi, Wz, W3, Wg = 0

d=ps= 1

Do dual-type ratio test using current lowest 1 value, i.e. © = 4:

4+ 0-4 — 3y, >0

11 1
3 34 = 0
—2 + 1-4 — by, >0

Tightest: —2+1-4 — 5y, > 0.

Achieved by: objective term containing nonbasic variable x3. Let x5 enter.

Third Pivot

The current dictionary is:

Current Dictionary:

maximize ¢ = 24415 + A49/15 + -76/5 X1 + -11/3 w2, o+ 2/5 Wy
+ -32/15 w4+ -2/15 u2 o+ 3/5 u x + /3 u we + S5 0 wa

Wi = 1 + 0O p - -4 X - -1 Wy - 0 Wa

X2 = 4/3 + 72 - 1 X1 - 1/3 W, - 0 Wg

W3 = 2/5 + 2/5 u - -21/5 X: - -1 Wy - 2/5 Wy

X3 = 4/5 + -1/5 u - 3/5 X1 - 0 Wy - -1/5 Wy

X1, X2, Xa, Wi, Wz, W3, Wg = 0

2=pus 4

Question: For which p is dictionary optimal? Answer:

-2+ 2 <0 1 > 0
11 1 4 1
-5 + 304 <0 s + 340 =20
P S0 2+ 2 >0
4 1
5 sk 20

Tightest lower bound: p > 2.

Achieved by: objective term containing nonbasic variable w,. Let w, enter.

Third Pivot—Continued

Who shall leave? Recall the current dictionary:

Current Dictionary:

maximize ¢ = 244115+ 49115 u + 76/5 x + M3 owe o+ 266w
+ “32115 4+ “2M15 u?2 o+ —3,’5u X1 + —1,’3u w, o+ <15 W wa

Wq = 1 + 0 u - -4 X1 - -1 wp, - 0 Wa

Xa = 4/3 + 12 n - 1 X1 - 1/3 W, - 0 Wy

W3 = 2/5 + 2/5 u - -21/5 X1 - -1 Wy - 2/5 Wy

X3 = 4/5 + -1/5 p - 3/5 X1 - 0 Wy - -1/5 Wy

X1, X2, Xa, Wi, Wz, W3, Wg = 0

2=us= 4

Do primal-type ratio test using current lowest 1 value, i.e. = 2:

1 +0-2 > 0
4 1

2 2 2

4 1 1

Tightest: % + % -2 — §w4 > 0.

Achieved by: constraint containing basic variable ws. Let w5 leave.
10

Fourth Pivot

The current dictionary is:

Current Dictionary:

maximize T = 50/3 + 1/2 + -1 X1 + -8/3 W2 + -1 W3
+ =73 n o+ “1/3 w2+ =3/7 m X + 16 p o we + 12 pn wsa

Wy = 1 + 0 u - -4 X1 - -1 w, - 0 Wz

X2 = 4/3 + V2 p - 1 X1 - 1/3 Wy - 0 W3

Wa = 1 + U VR -21/2 X1 - -5/2 W, - 5/2 W3

X3 = 1 + 0 u - -3/2 X1 - -1/2 Wy - 1/2 W3

X1, X2, Xa, Wi, Wz, W3, Wy = 0

lsus 2

It's optimall Also, the range of 1 values includes 1 = 0:

—11 — 3 < 0 1 > 0

8 1 4 1
3 ~ gt =0 3 g 20
—1 4+ 10 <0 1+ 1pg >0
1 > 0

Thatis, —1 < pu < 2.

Range of 14 values is shown at bottom of pivot tool. Invalid ranges are highlighted in yellow.
11

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.

12

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.

e Randomizing perturbation completely solves the degeneracy problem.

13

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.
e Randomizing perturbation completely solves the degeneracy problem.

e Perturbations don't have to be “small”.

14

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.
e Randomizing perturbation completely solves the degeneracy problem.
e Perturbations don't have to be “small”.

e In the optimal dictionary, perturbation is completely gone—no need to remove it.

15

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.

e Randomizing perturbation completely solves the degeneracy problem.

e Perturbations don't have to be “small”.

e In the optimal dictionary, perturbation is completely gone—no need to remove it.

e The average-case performance can be analyzed (next lecture).

16

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.

e Randomizing perturbation completely solves the degeneracy problem.

e Perturbations don't have to be “small”.

e In the optimal dictionary, perturbation is completely gone—no need to remove it.
e The average-case performance can be analyzed (next lecture).

e In some real-world problems, a “natural” perturbation exists (later).

17

Top Ten Reasons to Like this Method

e Freedom to pick perturbation as you like.

e Randomizing perturbation completely solves the degeneracy problem.

e Perturbations don't have to be “small”.

e In the optimal dictionary, perturbation is completely gone—no need to remove it.
e The average-case performance can be analyzed (next lecture).

e In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

18

AMPL Code

generate random problem with an optimal solution

let {i in 1..m, j in 1..n} A[i,j]:=round(sigma*Normal01());
let {i in 1..m} w[i] := round(sigma*Uniform01());

let {j in 1..n} x[j] := round(sigma*Uniform01());

let {i in 1..m} y[i] := round(sigma*Uniform01());

let {j in 1..n} z[j] := round(sigma*Uniform01());

let {i in 1..m} b[i] := sum {j in 1..n} A[i,jl*x[j] + wl[il;
let {j in 1..n} c[j] := sum {i in 1..m} A[i,jlxy[i] - z[j];
let {i in 1..m} bb[i] := sigma*Uniform01();

let {j in 1..n} cc[j] := -sigma*Uniform01();

let {i in 1..m, j in 1..n} A[i,j] := -A[i,j];

repeat while forever {

find entering (or leaving) variable

let mu := -1/eps;
let row := -1;
let col := -1;
for {j in 1..n} {
let tmp := -c[jl/ccljl;

if (c[j] > eps && tmp > mu) then {
let col := j;

let row := -1;
let mu := tmp;
}
}
for {i in 1..m} {
let tmp := -b[il/bbl[il;
if (b[i] < -eps &% tmp > mu) then {
let row := i;
let col := -1;
let mu := tmp;
}
}

if none, declare optimal
if (mu <= eps) then {
let opt :=1; # optimal;
break;

}

find leaving (or entering) variable
if (row == -1) then {
let minratio := 1/eps;
for {i in 1..m} {
if (A[i,col] < -eps) then {
if (-(b[i]+muxbb[i])/A[i,col]
< minratio) then {

let minratio := -(b[i]l+mux*bb[i])/A[i,col];
let row := i;
}
}

}

if minratio >= 1/eps then {
let opt := -1; # dual infeas
break;

+

} else if (col == -1) then {
let minratio := 1/eps;

for {j in 1..n} {
if (A[row,j] > eps) then {
if (-(c[jl+mu*cc[jl)/Alrow,j] < minratio) then {
let minratio := -(c[jl+mu*xcc[jl)/Alrow,j];
let col := j;

¥
}
3
if minratio == 1/eps then {
let opt := -1; # primal infeas
break;
3

19

let {j in 1..n} Arow[j]
let {i in 1..m} Acol[i]
let a := Alrow,col];

let {i in 1..m, j in 1..
let {j in 1..n} Alrow,j]
let {i in 1..m} A[i,col]
let A[row,col] := 1/a;

let brow := bl[row];
let {i in 1..m} b[i] :=

let bl[row] := -brow/a;
let ccol := clcoll;

let {j in 1..n} c[j] :=
let cl[col] := ccol/a;

let brow := bblrow];
let {i in 1..m} bb[i]
let bbl[row] := -brow/a;

let ccol := cclcoll;
let {j in 1..n} cc[j]
let cclcol] := ccol/a;

let jj := nonbasics[col]
let ii := basics[row];
let basics[row] := jj;
let nonbasics[col] := ii

let iter := iter+1;
} # the end of forever

Alrow,jl;
Ali,col]l;

n} Afli,jl := A[i,j] - Acoll[il*Arowl[jl/a;

= —Arow[jl/a;
:= Acol[il/a;

b[i] - browxAcol[il/a;

c[j] - ccol*xArow[jl/a;

bb[i] - browxAcol[il/a;

ccl[j]l - ccol*Arowl[jl/a;

>

>

20

Parametric Self-Dual Simplex Method

Thought experiment:
® |, starts at oo.
e In reducing u, there are n + m barriers.
e At each iteration, one barrier is passed—the others move about randomly.
e To get 1 to zero, we must on average pass half the barriers.

e Therefore, on average the algorithm should take (m + n)/2 iterations.

21

10* ¢

Parametric Self-Dual Simplex Method

sjoAld Jo Jaquinu

[42]
|_____ T T _______ T T _______ T T ______ T T _______ T T] m
N]
t ot]
+,]
+ + o+ +4
+ tTH L\ 4 t+, + 1t
..__.:+++ + ++ + + i
++++ F\ ¥ + |
¥4, +
SN
._nur| 4
¥
.
_ 1%
4 <
_ i)
4 <
[[1oy [OO
o o o @) o
— — — — —

m+n

iters = 0.4165(m + n)"?™

22

Parametric Self-Dual Simplex Method

10°¢

number of pivots

min(m,n)

iters = 1.4880 min(m, n)" %%

10

23

