
ORF 307: Lecture 10

Linear Programming: Chapter 7
Parametric Self-Dual Simplex Method

Robert Vanderbei

March 26, 2019

Slides last edited on March 25, 2019

https://vanderbei.princeton.edu

https://vanderbei.princeton.edu

An Example

maximize −3x1 + 11x2 + 2x3

subj. to −x1 + 3x2 ≤ 5
3x1 + 3x2 ≤ 4

3x2 + 2x3 ≤ 6
−3x1 − 5x3 ≤ −4

x1, x2, x3 ≥ 0.

Initial Dictionary:
ζ = −3x1 + 11x2 + 2x3

w1 = 5 + x1 − 3x2

w2 = 4 − 3x1 − 3x2

w3 = 6 − 3x2 − 2x3

w4 = −4 + 3x1 + 5x3

Note: neither primal nor dual feasible.

1

Perturb

Introduce a parameter µ and perturb:

ζ = −3 x1 + 11 x2 + 2 x3

−µx1 − µx2 − µx3

w1 = 5 + µ + x1 − 3x2

w2 = 4 + µ − 3x1 − 3x2

w3 = 6 + µ − 3x2 − 2x3

w4 = −4 + µ + 3x1 + 5x3

For µ large, dictionary is optimal.

Question: For which µ values is dictionary optimal?

2

Answer:

−3 − µ ≤ 0
11 − µ ≤ 0 ∗
2 − µ ≤ 0 ∗
5 + µ ≥ 0
4 + µ ≥ 0
6 + µ ≥ 0
−4 + µ ≥ 0 ∗

Note: only those marked with (*) give inequalities that omit µ = 0.

Tightest:
µ ≥ 11

Achieved by: objective row perturbation on x2.

Let x2 enter.

3

Who Leaves?

Do ratio test using current lowest µ value, i.e. µ = 11:

5 + 11 − 3x2 ≥ 0
4 + 11 − 3x2 ≥ 0
6 + 11 − 3x2 ≥ 0
−4 + 11 ≥ 0

Tightest:
4 + 11− 3x2 ≥ 0.

Achieved by: constraint containing basic variable w2.

Let w2 leave.

4

After the pivot:

ζ = 44
3

+ 11
3
µ − 14x1 − 11

3
w2 + 2 x3

−4
3
µ − 1

3
µ2 + 1

3
µ w2 − µ x3

w1 = 1 + 4x1 + w2

x2 = 4
3

+ 1
3
µ − x1 − 1

3
w2

w3 = 2 + 3x1 + w2 − 2x3

w4 = −4 + µ + 3x1 + 5x3

5

Advanced Pivot Tool

Using the advanced pivot tool, the original and current dictionaries are:

6

Second Pivot

Here’s the current dictionary:

Question: For which µ values is this dictionary optimal? Answer:

−14 ≤ 0 1 ≥ 0

−11
3
+ 1

3
µ ≤ 0 4

3
+1

3
µ ≥ 0

2− µ ≤ 0 ∗ 2 ≥ 0

−4+ µ ≥ 0 ∗

Tightest lower bound: µ ≥ 4.

Achieved by: constraint containing basic variable w4. Let w4 leave. 7

Second Pivot–Continued

Who shall enter?

Recall the current dictionary:

Do dual-type ratio test using current lowest µ value, i.e. µ = 4:

14 + 0 · 4 − 3y4 ≥ 0
11
3
− 1

3
· 4 ≥ 0

−2 + 1 · 4 − 5y4 ≥ 0

Tightest: −2 + 1 · 4− 5y4 ≥ 0.

Achieved by: objective term containing nonbasic variable x3. Let x3 enter.
8

Third Pivot

The current dictionary is:

Question: For which µ is dictionary optimal? Answer:

−76
5

+ 3
5
µ ≤ 0 1 ≥ 0

−11
3

+ 1
3
µ ≤ 0 4

3
+ 1

3
µ ≥ 0

2
5
− 1

5
µ ≤ 0 ∗ 2

5
+ 2

5
µ ≥ 0

4
5
− 1

5
µ ≥ 0

Tightest lower bound: µ ≥ 2.

Achieved by: objective term containing nonbasic variable w4. Let w4 enter.
9

Third Pivot–Continued

Who shall leave? Recall the current dictionary:

Do primal-type ratio test using current lowest µ value, i.e. µ = 2:

1 + 0 · 2 ≥ 0
4
3
+ 1

3
· 2 ≥ 0

2
5
+ 2

5
· 2 − 2

5
w4 ≥ 0

4
5
− 1

5
· 2 + 1

5
w4 ≥ 0

Tightest: 2
5
+ 2

5
· 2− 2

5
w4 ≥ 0.

Achieved by: constraint containing basic variable w3. Let w3 leave.
10

Fourth Pivot

The current dictionary is:

It’s optimal! Also, the range of µ values includes µ = 0:

−11 − 3
2
µ ≤ 0 1 ≥ 0

−8
3
− 1

6
µ ≤ 0 4

3
+ 1

3
µ ≥ 0

−1 + 1
2
µ ≤ 0 1 + 1µ ≥ 0

1 ≥ 0

That is, −1 ≤ µ ≤ 2.

Range of µ values is shown at bottom of pivot tool. Invalid ranges are highlighted in yellow.
11

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

12

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

13

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

14

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

15

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

16

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

17

Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed (next lecture).

• In some real-world problems, a “natural” perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

18

AMPL Code

generate random problem with an optimal solution
let {i in 1..m, j in 1..n} A[i,j]:=round(sigma*Normal01());
let {i in 1..m} w[i] := round(sigma*Uniform01());
let {j in 1..n} x[j] := round(sigma*Uniform01());
let {i in 1..m} y[i] := round(sigma*Uniform01());
let {j in 1..n} z[j] := round(sigma*Uniform01());
let {i in 1..m} b[i] := sum {j in 1..n} A[i,j]*x[j] + w[i];
let {j in 1..n} c[j] := sum {i in 1..m} A[i,j]*y[i] - z[j];
let {i in 1..m} bb[i] := sigma*Uniform01();
let {j in 1..n} cc[j] := -sigma*Uniform01();
let {i in 1..m, j in 1..n} A[i,j] := -A[i,j];

repeat while forever {

find entering (or leaving) variable
let mu := -1/eps;
let row := -1;
let col := -1;
for {j in 1..n} {
let tmp := -c[j]/cc[j];
if (c[j] > eps && tmp > mu) then {

let col := j;
let row := -1;
let mu := tmp;

}
}
for {i in 1..m} {
let tmp := -b[i]/bb[i];
if (b[i] < -eps && tmp > mu) then {

let row := i;
let col := -1;
let mu := tmp;

}
}

if none, declare optimal
if (mu <= eps) then {

let opt := 1; # optimal;
break;

}

find leaving (or entering) variable
if (row == -1) then {
let minratio := 1/eps;
for {i in 1..m} {
if (A[i,col] < -eps) then {
if (-(b[i]+mu*bb[i])/A[i,col]

< minratio) then {
let minratio := -(b[i]+mu*bb[i])/A[i,col];
let row := i;

}
}

}
if minratio >= 1/eps then {

let opt := -1; # dual infeas
break;

}
} else if (col == -1) then {
let minratio := 1/eps;
for {j in 1..n} {
if (A[row,j] > eps) then {
if (-(c[j]+mu*cc[j])/A[row,j] < minratio) then {

let minratio := -(c[j]+mu*cc[j])/A[row,j];
let col := j;

}
}

}
if minratio == 1/eps then {

let opt := -1; # primal infeas
break;

}
}

:
19

.

.

.
let {j in 1..n} Arow[j] := A[row,j];
let {i in 1..m} Acol[i] := A[i,col];
let a := A[row,col];

let {i in 1..m, j in 1..n} A[i,j] := A[i,j] - Acol[i]*Arow[j]/a;
let {j in 1..n} A[row,j] := -Arow[j]/a;
let {i in 1..m} A[i,col] := Acol[i]/a;
let A[row,col] := 1/a;

let brow := b[row];
let {i in 1..m} b[i] := b[i] - brow*Acol[i]/a;
let b[row] := -brow/a;

let ccol := c[col];
let {j in 1..n} c[j] := c[j] - ccol*Arow[j]/a;
let c[col] := ccol/a;

let brow := bb[row];
let {i in 1..m} bb[i] := bb[i] - brow*Acol[i]/a;
let bb[row] := -brow/a;

let ccol := cc[col];
let {j in 1..n} cc[j] := cc[j] - ccol*Arow[j]/a;
let cc[col] := ccol/a;

let jj := nonbasics[col];
let ii := basics[row];
let basics[row] := jj;
let nonbasics[col] := ii;

let iter := iter+1;
} # the end of forever

20

Parametric Self-Dual Simplex Method

Thought experiment:

• µ starts at ∞.

• In reducing µ, there are n +m barriers.

• At each iteration, one barrier is passed—the others move about randomly.

• To get µ to zero, we must on average pass half the barriers.

• Therefore, on average the algorithm should take (m + n)/2 iterations.

21

100 101 102 103
10−1

100

101

102

103

104 Parametric Self−Dual Simplex Method

m + n

nu
m

be
r

of
 p

iv
ot

s

iters = 0.4165(m + n)0.9759

22

100 101 102 103
100

101

102

103

104

105 Parametric Self−Dual Simplex Method

min(m,n)

nu
m

be
r

of
 p

iv
ot

s

iters = 1.4880min(m, n)1.3434

23

