ORF 307: Lecture 10

Linear Programming: Chapter 7 Parametric Self-Dual Simplex Method

Robert Vanderbei

March 26, 2019

Slides last edited on March 25, 2019

An Example

Initial Dictionary:

Note: neither primal nor dual feasible.

Perturb

Introduce a parameter μ and perturb:

For μ large, dictionary is optimal.

Question: For which μ values is dictionary optimal?

Answer:

Note: only those marked with (*) give inequalities that omit $\mu = 0$.

Tightest:

$$\mu \geq 11$$

Achieved by: objective row perturbation on x_2 .

Let x_2 enter.

Who Leaves?

Do ratio test using current lowest μ value, i.e. $\mu = 11$:

$$5 + 11 - 3x_2 \ge 0
4 + 11 - 3x_2 \ge 0
6 + 11 - 3x_2 \ge 0
-4 + 11 \ge 0$$

Tightest:

$$4 + 11 - 3x_2 > 0$$
.

Achieved by: constraint containing basic variable w_2 .

Let w_2 leave.

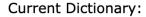
After the pivot:

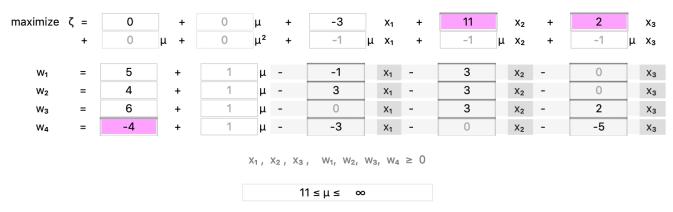
$$\zeta = \frac{44}{3} + \frac{11}{3}\mu - 14x_1 - \frac{11}{3} w_2 + 2 x_3
-\frac{4}{3}\mu - \frac{1}{3}\mu^2 + \frac{1}{3}\mu w_2 - \mu x_3$$

$$w_1 = 1 + 4x_1 + w_2
x_2 = \frac{4}{3} + \frac{1}{3}\mu - x_1 - \frac{1}{3}w_2
w_3 = 2 + 3x_1 + w_2 - 2x_3
w_4 = -4 + \mu + 3x_1 + 5x_3$$

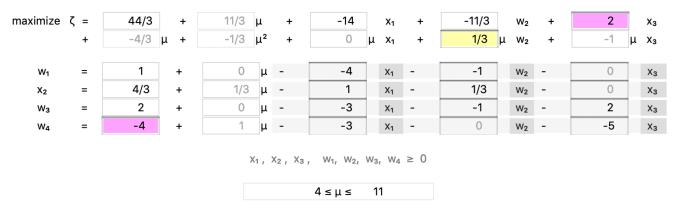
Advanced Pivot Tool

Using the *advanced* pivot tool, the original and current dictionaries are:





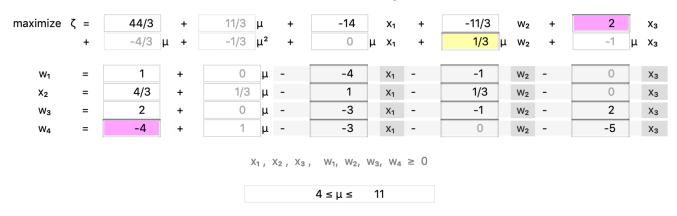
Current Dictionary:



Second Pivot

Here's the current dictionary:

Current Dictionary:



Question: For which μ values is this dictionary optimal? Answer:

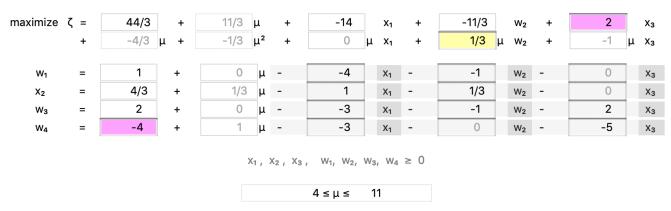
Tightest lower bound: $\mu \geq 4$.

Achieved by: constraint containing basic variable w_4 . Let w_4 leave.

Second Pivot-Continued

Who shall enter?

Recall the current dictionary:



Do *dual-type* ratio test using current lowest μ value, i.e. $\mu=4$:

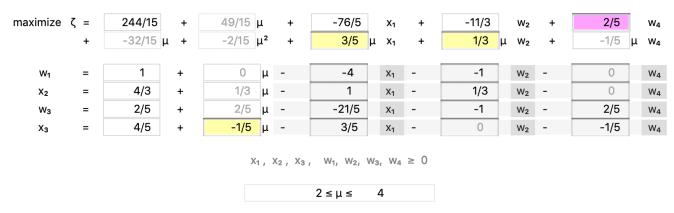
Tightest: $-2 + 1 \cdot 4 - 5y_4 \ge 0$.

Achieved by: objective term containing nonbasic variable x_3 . Let x_3 enter.

Third Pivot

The current dictionary is:

Current Dictionary:



Question: For which μ is dictionary optimal? Answer:

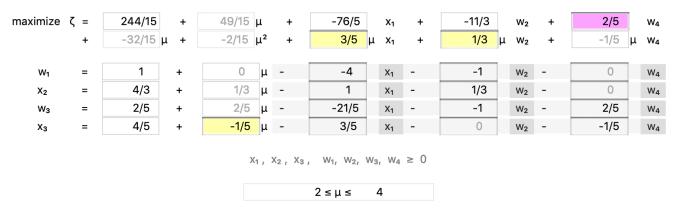
Tightest lower bound: $\mu \geq 2$.

Achieved by: objective term containing nonbasic variable w_4 . Let w_4 enter.

Third Pivot–Continued

Who shall leave? Recall the current dictionary:

Current Dictionary:



Do *primal-type* ratio test using current lowest μ value, i.e. $\mu = 2$:

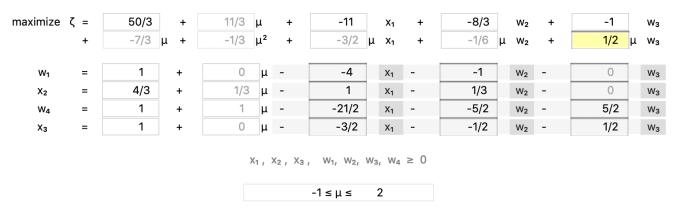
Tightest: $\frac{2}{5} + \frac{2}{5} \cdot 2 - \frac{2}{5}w_4 \ge 0$.

Achieved by: constraint containing basic variable w_3 . Let w_3 leave.

Fourth Pivot

The current dictionary is:

Current Dictionary:



It's optimal! Also, the range of μ values includes $\mu = 0$:

That is, $-1 < \mu < 2$.

Range of μ values is shown at bottom of pivot tool. Invalid ranges are highlighted in yellow.

• Freedom to pick perturbation as you like.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed (next lecture).

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed (next lecture).
- In some real-world problems, a "natural" perturbation exists (later).

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed (next lecture).
- In some real-world problems, a "natural" perturbation exists (later).

Okay, there are only 6 items in the list. SORRY.

AMPL Code

```
# generate random problem with an optimal solution
let {i in 1..m, j in 1..n} A[i,j]:=round(sigma*Normal01());
let {i in 1..m} w[i] := round(sigma*Uniform01());
let {j in 1..n} x[j] := round(sigma*Uniform01());
let {i in 1..m} y[i] := round(sigma*Uniform01());
let {j in 1..n} z[j] := round(sigma*Uniform01());
let {i in 1..m} b[i] := sum {j in 1..n} A[i,j]*x[j] + w[i];
let {j \text{ in } 1..n} c[j] := sum {i in } 1..m} A[i,j]*y[i] - z[j];
let {i in 1..m} bb[i] := sigma*Uniform01();
let {j in 1..n} cc[j] := -sigma*Uniform01();
let {i in 1..m, j in 1..n} A[i,j] := -A[i,j];
repeat while forever {
  # find entering (or leaving) variable
  let mu := -1/eps;
  let row := -1;
  let col := -1;
  for {j in 1..n} {
    let tmp := -c[j]/cc[j];
    if (c[j] > eps \&\& tmp > mu) then {
       let col := j;
       let row := -1;
       let mu := tmp;
    }
  for {i in 1..m} {
    let tmp := -b[i]/bb[i];
    if (b[i] < -eps \&\& tmp > mu) then {
       let row := i;
       let col := -1;
       let mu := tmp;
   }
```

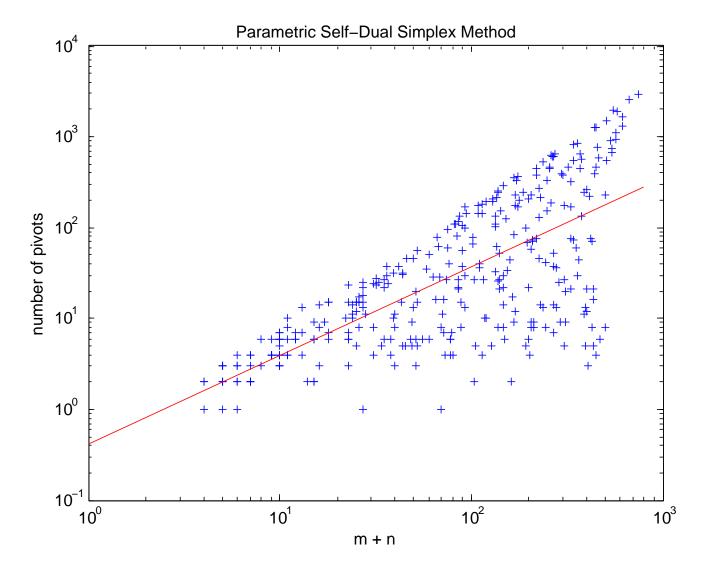
```
# if none, declare optimal
if (mu <= eps) then {
    let opt := 1; # optimal;
    break;
}
# find leaving (or entering) variable
if (row == -1) then {
  let minratio := 1/eps;
  for {i in 1..m} {
    if (A[i,col] < -eps) then {
      if (-(b[i]+mu*bb[i])/A[i,col]
                 < minratio) then {
        let minratio := -(b[i]+mu*bb[i])/A[i,col];
        let row := i;
      }
    }
  }
  if minratio >= 1/eps then {
        let opt := -1; # dual infeas
        break;
} else if (col == -1) then {
  let minratio := 1/eps;
  for {j in 1..n} {
    if (A[row, j] > eps) then {
      if (-(c[j]+mu*cc[j])/A[row,j] < minratio) then {
         let minratio := -(c[j]+mu*cc[j])/A[row,j];
         let col := j;
      }
    }
  if minratio == 1/eps then {
        let opt := -1; # primal infeas
        break;
}
```

```
let {j in 1..n} Arow[j] := A[row,j];
  let {i in 1..m} Acol[i] := A[i,col];
  let a := A[row,col];
  let {i in 1..m, j in 1..n} A[i,j] := A[i,j] - Acol[i]*Arow[j]/a;
  let \{j \text{ in } 1..n\} A[row,j] := -Arow[j]/a;
  let {i in 1..m} A[i,col] := Acol[i]/a;
   let A[row,col] := 1/a;
  let brow := b[row];
  let {i in 1..m} b[i] := b[i] - brow*Acol[i]/a;
  let b[row] := -brow/a;
  let ccol := c[col];
  let {j in 1..n} c[j] := c[j] - ccol*Arow[j]/a;
  let c[col] := ccol/a;
  let brow := bb[row];
  let {i in 1..m} bb[i] := bb[i] - brow*Acol[i]/a;
  let bb[row] := -brow/a;
  let ccol := cc[col];
  let {j in 1..n} cc[j] := cc[j] - ccol*Arow[j]/a;
  let cc[col] := ccol/a;
  let jj := nonbasics[col];
  let ii := basics[row];
  let basics[row] := jj;
  let nonbasics[col] := ii;
  let iter := iter+1;
} # the end of forever
```

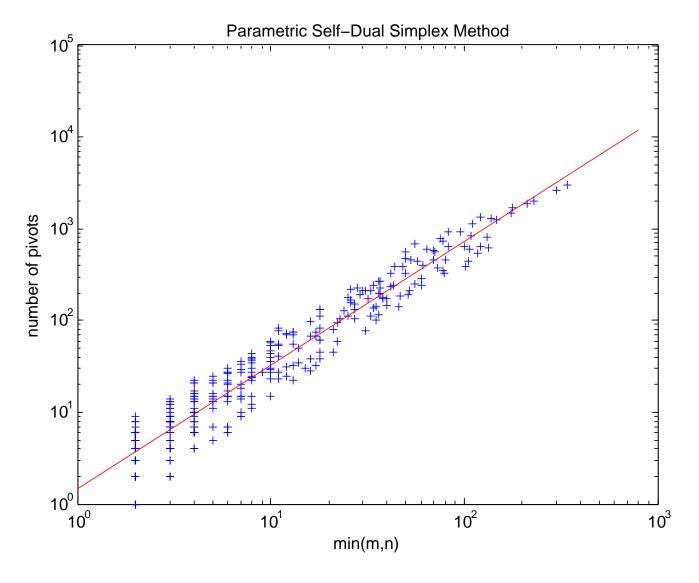
Parametric Self-Dual Simplex Method

Thought experiment:

- μ starts at ∞ .
- In reducing μ , there are n+m barriers.
- At each iteration, one barrier is passed—the others move about randomly.
- ullet To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take (m+n)/2 iterations.



iters =
$$0.4165(\mathbf{m} + \mathbf{n})^{0.9759}$$



iters = $1.4880 \min(\mathbf{m}, \mathbf{n})^{1.3434}$