ORF 307: Lecture 12

Linear Programming: Chapter 11: Game Theory

Robert J. Vanderbei

April 2, 2019

Slides last edited on April 1, 2019

Game Theory

John Nash = A Beautiful Mind

Rock-Paper-Scissors

A two person game.

Rules.
At the count of three declare one of:
Rock Paper Scissors

Winner Selection. Identical selection is a draw. Otherwise:

- Rock dulls Scissors
- Paper covers Rock
- Scissors cuts Paper

Check out Sam Kass' version: Rock, Paper, Scissors, Lizard, Spock

It was featured on The Big Bang Theory.

Payoffs are from row player to column player:

Note: Any deterministic strategy employed by either player can be defeated systematically by the other player.

Two-Person Zero-Sum Games

Given: $m \times n$ matrix A.

- Row player selects a strategy $i \in\{1, \ldots, m\}$.
- Column player selects a strategy $j \in\{1, \ldots, n\}$.
- Row player pays column player $a_{i j}$ dollars.

Note: The rows of A represent deterministic strategies for row player, while columns of A represent deterministic strategies for column player.

Deterministic strategies can be (and usually are) bad.

- Suppose row player picks i with probability y_{i}.
- Suppose column player picks j with probability x_{j}.

Throughout, $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$ and $y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{m}\end{array}\right]^{T}$ will denote stochastic vectors:

$$
\begin{aligned}
x_{j} & \geq 0, \quad j=1,2, \ldots, n \\
\sum_{j} x_{j} & =1
\end{aligned}
$$

If row player uses random strategy y and column player uses x, then expected payoff from row player to column player is

$$
\sum_{i} \sum_{j} y_{i} a_{i j} x_{j}=y^{T} A x
$$

Column Player's Analysis

Suppose column player were to adopt strategy x.

Then, row player's best defense is to use strategy y that minimizes $y^{T} A x$:

$$
\min _{y} y^{T} A x
$$

And so column player should choose that x which maximizes these possibilities:

$$
\max _{x} \min _{y} y^{T} A x
$$

Quiz

What's the solution to this problem:
minimize $\quad 3 y_{1}+6 y_{2}+2 y_{3}+18 y_{4}+7 y_{5}$
subject to: $\quad y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=1$

$$
y_{i} \geq 0, \quad i=1,2,3,4,5
$$

Inner optimization is easy:

$$
\min _{y} y^{T} A x=\min _{i} e_{i}^{T} A x
$$

(e_{i} denotes the vector that's all zeros except for a one in the i-th position-that is, deterministic strategy i).

Note: Reduced a minimization over a continuum to one over a finite set.

We have:

$$
\begin{aligned}
& \max \left(\min _{i} e_{i}^{T} A x\right) \\
& \sum_{j} x_{j}=1 \\
& x_{j} \geq 0, \quad j=1,2, \ldots, n
\end{aligned}
$$

Reduction to a Linear Programming Problem

Introduce a scalar variable v representing the value of the inner minimization:
$\max v$

$$
\begin{array}{rlrl}
v & \leq e_{i}^{T} A x, & & i=1,2, \ldots, m \\
\sum_{j} x_{j} & =1 \\
x_{j} & \geq 0, & j=1,2, \ldots, n
\end{array}
$$

Writing in pure matrix-vector notation:

$$
\begin{array}{r}
\max v \\
v e-A x \leq 0 \\
e^{T} x=1 \\
x \geq 0
\end{array}
$$

(e without a subscript denotes the vector of all ones).

$$
\begin{gathered}
\max \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
v
\end{array}\right] \\
\left.\left[\begin{array}{cc}
-A & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right] \begin{array}{l}
\leq \\
=
\end{array} \begin{array}{l}
0 \\
1
\end{array}\right] \\
x \geq 0 \\
v \text { free }
\end{gathered}
$$

Row Player's Perspective

Similarly, row player seeks y^{*} attaining:

$$
\min _{y} \max _{x} y^{T} A x
$$

which is equivalent to:

$$
\begin{aligned}
& \min u \\
& u e-A^{T} y \geq 0 \\
& e^{T} y=1 \\
& y \geq 0
\end{aligned}
$$

$$
\begin{gathered}
\min \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
{\left[\begin{array}{cc}
-A^{T} & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
y \geq 0 \\
u \text { free }
\end{gathered}
$$

Note: Row player's problem is dual to column player's:

$$
\begin{array}{cc}
\max \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
v
\end{array}\right] & \min \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
{\left[\begin{array}{cc}
-A & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} & {\left[\begin{array}{cc}
-A^{T} & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
x \geq 0 & y \geq 0 \\
v \text { free } & u \text { free }
\end{array}
$$

MiniMax Theorem

Theorem.

Let x^{*} denote column player's solution to her max-min problem.
Let y^{*} denote row player's solution to his min-max problem.
Then

$$
\max _{x} y^{* T} A x=\min _{y} y^{T} A x^{*}
$$

Proof. From Strong Duality Theorem, we have

$$
u^{*}=v^{*}
$$

Also,

$$
\begin{aligned}
v^{*} & =\min _{i} e_{i}^{T} A x^{*}=\min _{y} y^{T} A x^{*} \\
u^{*} & =\max _{j} y^{* T} A e_{j}=\max _{x} y^{* T} A x
\end{aligned}
$$

QED

AMPL Model

```
set ROWS;
set COLS;
param A {ROWS,COLS} default 0;
var x{COLS} >= 0;
var v;
maximize zot: v;
subject to ineqs {i in ROWS}:
    sum{j in COLS} -A[i,j] * x[j] + v <= 0;
subject to equal:
    sum{j in COLS} x[j] = 1;
```

data;
set ROWS := P S R;
set COLS := P S R;
param A: P S R:=
$\begin{array}{llll}\mathrm{P} & 0 & 1 & -2\end{array}$
$\begin{array}{llll}\text { S } & -3 & 0 & 4\end{array}$
$\begin{array}{llll}R & 5 & -6 & 0\end{array}$
;
solve;
printf $\{j$ in COLS : " $\% 3 s \% 10.7 f$ \n", j, 102*x[j];
printf \{i in ROWS\}: " $\% 3 s \% 10.7 f$ $\backslash \mathrm{n} ", ~ i, ~ 102 * i n e q s[i] ;$
printf: "Value = \%10.7f \n", 102*v;

AMPL Output

```
ampl gamethy.mod
LOQO: optimal solution (12 iterations)
primal objective -0.1568627451
    dual objective -0.1568627451
        P 40.0000000
        S 36.0000000
        R 26.0000000
        P 62.0000000
        S 27.0000000
        R 13.0000000
Value = -16.0000000
```


Dual of Problems in General Form (Review)

Consider:

$$
\begin{aligned}
\max c^{T} x & \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Rewrite equality constraints as pairs of inequalities:

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
-A x & \leq-b \\
x & \geq 0
\end{aligned}
$$

Put into block-matrix form:

$$
\begin{aligned}
& \max c^{T} x \\
& {\left[\begin{array}{r}
A \\
-A
\end{array}\right] x } \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right] \\
& x \geq 0
\end{aligned}
$$

Dual is:

$$
\begin{aligned}
& \min \left[\begin{array}{r}
b \\
-b
\end{array}\right]^{T}\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \\
& {\left[\begin{array}{l}
\left.A^{T}-A^{T}\right]\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c \\
y^{+}, y^{-} \geq 0
\end{array}\right.}
\end{aligned}
$$

Which is equivalent to:

$$
\begin{aligned}
\min b^{T}\left(y^{+}-y^{-}\right) & \\
A^{T}\left(y^{+}-y^{-}\right) & \geq c \\
y^{+}, y^{-} & \geq 0
\end{aligned}
$$

Finally, letting $y=y^{+}-y^{-}$, we get

$$
\begin{aligned}
& \min b^{T} y \\
& A^{T} y \geq c \\
& y \text { free. }
\end{aligned}
$$

- Equality constraints \Longrightarrow free variables in dual.
- Inequality constraints \Longrightarrow nonnegative variables in dual.

Corollary:

- Free variables \Longrightarrow equality constraints in dual.
- Nonnegative variables \Longrightarrow inequality constraints in dual.

A Real-World Example

The Ultra-Conservative Investor
Consider again some historical investment data $\left(S_{j}(t)\right)$:

As before, we can let let $R_{t, j}=S_{j}(t) / S_{j}(t-1)$ and view R as a payoff matrix in a game between Fate and the Investor.

Fate's Conspiracy

The columns represent pure strategies for our conservative investor.
The rows represent how history might repeat itself.
Of course, for tomorrow, Fate won't just repeat a previous day's outcome but, rather, will present some mixture of these previous days.
Likewise, the investor won't put all of her money into one asset. Instead she will put a certain fraction into each.
Using this data in the game-theory AMPL model, we get the following mixed-strategy percentages for Fate and for the investor.

Investor's Optimal Asset Mix:
XLP 98.4
XLU 1.6

Mean Old Fate's Mix:

2011-08-08 $55.9 \Longleftarrow$ Black Monday (2011) 2011-08-10 44.1

The value of the game is the investor's expected return, 96.2%, which is actually a loss of 3.8%.

The data can be download from here: http://finance.yahoo.com/q/hp?s=XLU Here, XLU is just one of the funds of interest.

To Ignore Black Monday (2011)

Fate's Conspiracy

Investor's Optimal Asset Mix:		Mean Old Fate's Mix:	
			$2015-03-25$
XLK	75.5	$2014-04-10$	1.7
XLV	15.9	$2013-06-20$	68.9
XLU	6.2	$2012-11-07$	13.9
XLB	2.2	$2012-06-01$	11.5

The value of the game is the investor's expected return, 97.7%, which is actually a loss of 2.3\%.

Giving Fate Fewer Options

Thousands seemed unfair-How about 20...

Fate's Conspiracy

```
Investor's Optimal Asset Mix:
MDY 83.7
XLE 13.2
XLF 3.2
```


Mean Old Fate's Mix:

2015-03-25 11.5
2015-03-10 33.5
2015-03-06 55.0

The value of the game is the investor's expected return, 98.7%, which is actually a loss of 1.3\%.

