ORF 307: Lecture 15

Linear Programming: Chapter 15: Network Flows: Applications

Robert J. Vanderbei

April 11, 2019

Slides last edited on January 25, 2019

Each node is one of two types:

- source (supply) node
- destination (demand) node

Every arc has:

- its tail at a supply node
- its head at a demand node

Such a graph is called bipartite.
Notoriously not planar.

Transportation problem in which

- Equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2 n$ constraints but only n nonzero flows).

Given:

- Network: $(\mathcal{N}, \mathcal{A})$
- Costs $=$ Travel Times:
$c_{i j},(i, j) \in \mathcal{A}$
- Home (root): $r \in \mathcal{N}$

Problem: Find shortest path from every node in \mathcal{N} to root.

Network Flow Formulations

First Thought...

- Put

$$
b_{i}= \begin{cases}1 & i=\text { starting point } \\ -1 & i=\text { destination }\end{cases}
$$

- Solve min-cost network flow problem.
- Shortest path from source to destination: follow tree arcs.
- Highly degenerate. Most tree arcs have zero flow.

A Better Method

- Put

$$
b_{i}= \begin{cases}1 & i \neq r \\ -(m-1) & i=r\end{cases}
$$

- Shortest path from i to r : follow tree arcs.
- Length (of time) of shortest path $=y_{r}^{*}-y_{i}^{*}$.

Notation Used in Following Algorithms NOTE: NOT COVERED IN CLASS

- Put $v_{i}=$ minimum time from i to r
- Called label in networks literature.
- Called value in dynamic programming literature.

Label Correcting Algorithm = Dynamic Prog.

- Bellman's Equation $=$ Principle of Dynamic Programming

$$
\begin{aligned}
v_{r} & =0 \\
v_{i} & =\min \left\{c_{i j}+v_{j}:(i, j) \in \mathcal{A}\right\} \\
T & =\left\{(i, j) \in \mathcal{A}: v_{i}=c_{i j}+v_{j}\right\} \quad \text { - not necessarily a tree }
\end{aligned}
$$

- Method of Successive Approximation
- Let k denote an iteration counter.
- Fix root node's value to zero for all iterations: $v_{r}^{(k)}=0$ for all k.
- For all other nodes...
$*$ Initialize: $v_{i}^{(0)}=\infty$.
* Iterate: $v_{i}^{(k+1)}=\min \left\{c_{i j}+v_{j}^{(k)}:(i, j) \in \mathcal{A}\right\} \quad i \neq r$.
* Stop: when a pass leaves v_{i} 's unchanged.
- Complexity
$-v_{i}^{(k)}=$ length of shortest path having k or fewer arcs.
- Requires at most $m-1$ passes.
- n adds/compares per pass.
- mn operations in total.

Label Setting Algorithm = Dijkstra's Algorithm

Notations:

- $F=$ set of finished nodes (labels are set).
- $h_{i}, i \in \mathcal{N}=$ next node to visit after i (heading).

Dijkstra's Algorithm:

- Initialize:

$$
F=\emptyset, \quad v_{j}= \begin{cases}0 & j=r \\ \infty & j \neq r\end{cases}
$$

- Iterate:
- While unfinished nodes remain, select the one with smallest v_{k}. Call it j. Add it to set of finished nodes F.
- For each unfinished node i having an arc connecting it to j :
* If $c_{i j}+v_{j}<v_{i}$, then set

$$
\begin{aligned}
v_{i} & =c_{i j}+v_{j} \\
h_{i} & =j
\end{aligned}
$$

Dijkstra's Algorithm-Complexity

- Each iteration finishes one node: m iterations
- Work per iteration:
- Selecting an unfinished node:
* Naively, m comparisons.
* Using appropriate data structures, a heap, $\log m$ comparisons.
- Update adjacent arcs.

- Overall: $m \log m+n$.

