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Interior-Point Methods—The Breakthrough

Breakthrough in Problem Solving
By JAMES GLEICK

A 28-year-old mathematician at A.T.&r.
Bell Laboratories has made a startling
theoretical breakthrough in the solving of
systems of equations that often grow too
vast and complex for the most powerful
computers.
The discovery, which is to be formally

published next month, is already cir-
culating rapidly through the mathematical
world. It has also set off a deluge of
inquiries from brokerage houses, oil com-
panies and airlines, industries with millions
of dollars at stake in problems known as
linear programming.

Faster Solulions Seen
These problems are fiendishly com-

plicated systems, often with thousands of
variables. They arise in a variety of com·
morcial and government applications, rang-
illl from allocating time on a communica-
tions satellite to routing millions of
telephone calls over long distances. or
whenever a limited, expensive resource
must be spread most efficiently among
competing users. And investment- com-
panies use them in creating portfolios with
the best mix of stocks and bonds.
The Bell Labs mathematician, Dr.

Narendra Karmarkar, has devised a
radically new procedure that may speed the
routine handling of such problems by
businesses and Government agencies and
also make it possible to tackle problems
that are now far out of reach.
"This is a path-breaking result," said Dr,

Ronald L. Graham, director of
mathematical sciences for Bell Labs in
Murray Hill, N.J.

"Science has its moments of great pro-
gress, and this may well be one of them."
Because problems in linear program-

ming can have billions or more possible
answers, even high·speed computers can-
not check every one. So computers must
u$:e a special procedure, an algorithm, to
examine as few answers as possible before
finding the best one - typically the one
that minimizes cost or maximizes
efficiency.
A procedure devised in 1947, the simplex

method, is now used for such problems,

Conlinued on Page Al9, Column 1

THE NEW YORK TIMES, November 19, 1984

Karmarkar at Bell Leba: an equation to find 8 new way through the maze

Folding the Perfect Corner
A young Bell scientist makes a major math breakthrough

Every day 1,200 American Airlines jets
crisscross the u.s., Mexico, Canada and

the Caribbean, stopping in no cities and bear-
ing over 80,000 passengers. More than 4,(X)()
pilots, copilots, flight personnel, maintenance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bolts,
altimeters, landing gears and the like must be
checked at each destination. And while per-
forming these scheduling gymnastics, the
company must keep a close eye on costs, pro-
jected revenue and profits.
Like American Airlines, thousands of com-

panies must routinely untangle the myriad
variables that complicate the efficient distribu-
tion of their resources. Solving such monstrous
problems requires the use of an abstruse
branch of mathematics known as linear pro-
gramming. It is the kind of math that has
frustrated theoreticians for years, and even the
fasLest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born mathematician at Bell
Laboratories in Murray Hill, NJ., after only
a years' work has cracked the puzzle of linear
programming by devising a new algorithm, a
step-by-step mathematical fonnula. He has
translated the procedure into a program that
should allow computers to track a greater com-
bination of tasks than ever before and in a frac-
tion of the time.
Unlike most advances in theoretical

mathematics, Karmarkar's work will have an
inunediate and major impact on the real world.
"Breakthrough is one of the most abused
words in science," says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs.
"But this is one situation where it is truly ap-
propriate."
Before the Kannarkar method. linear equa-

tions could be solved only in a cumbersome
fashion, ironically known as the simplex
method, devised by MathematiCian George
Dantzig in 1947. Problems are conceived of
as giant geodesic domes with thousands of
sides. Each corner of a facet on the dome

TIME MAGAZINE, December 3, 1984
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The Wall Street Journal Waits ’Till 1986

Karmarkar Algorithm Proves Its Worth

Less than two years after discovery of a mathematical procedure that Bell Labs
said could solve a broad range of complex business problems 50 to 100 times
faster than current methods, AT&T is filing for patents covering its use. The
Karmarkar algorithm, which- drew headlines when discovered

by researcher N""'ndra Kmmarkar. will be applied first to AT&r's long-distance neh<l:lrk.
Thus far, Bell Labs has verified the procedure's capabilities in developing plans for

new fiber-optic lranSmission and satellite capacity linking 20 countries bordering the
Pacific Ocean. Thatjoindy owned network will be built during the next 10 years. Plan-
ning requires a tremendous number of "what if' scenarios involving 43,000 variables
describing transmission capacity. location and construction schedules, all juggled amid
political considerations of each connected country.
The Kannarkar algorithm was able to solve the Pacific Basin problem in four minutes,

against 80 minutes by the method previously used, says Neil Dinn, head of Bell Labs'
international transmission planning department. The speedier solutions will enable in-
ternational committees to agree on network designs at onc meeting instead of many
meetings stretched out aver months.
AT&r now is using the Kannarkar procedure to plan construction for its domestic

neh<l:lrk, a problem involving 800.000 variables. In addition, the procedure may be written
into software controlling routing ofdomestic phone cslJs, boosting the capacity of AT&r's
current network.

THE WALL STREET JOURNAL, July 18, 1986--------

THE STARTLING DISCOVERY
BELL LABS KEPT IN THE SHADOWS
Now its breakthrough mathematical formula could save business millions

twist. Other scient isis weren't able to
duplicate Karmarkar's work, it turns out,
because his employer VoIanted it that way. Vital
details about how best to translate the

Igorithm. whose mathematical
notations run on for about 20
printed pages, into digital com·
putercode were withheld to give
Bell Labs a head start at develop-
ing commercial products.
Following the breakup of
American Telephone &
Telegraph Co. in January. 1984,
Bell Labs was no longer
prevented from exploiting its
research for profit. While the
underlying concept could not be
patented or copyrighted because
it is pure knowledge, any com-
puter programs that AT&T
developed to implement the pro·
cedure can be protected.
Now, AT&T may soon be sell-

ing the first product based on
Karmarkar's work-to the U.S.
Air Force. It includes a
multiprocessor computer from
Alliant Computer Systems Corp.
and a software version of Kar-
markar's algorithm that has been
optimized for high-speed parallel
processing. The system would be
installed at St. Louis' Scott Air

Force Base, headquarters of the Military
Airlift Command (MAC). Neither pany will
comment on the deal's cost or where the
negotiations stand. but the Air Force's interest
is easy to fathom.
JUGGLING ACT. On a typical day
thousands of planes ferry c<lrgo and
passengers among air fields scattered around
the world. To keep those jets nying. MAC

HEAD START. To most mathematicians.
Karmarkar's precocious feat was hard to
swallow. Because such questions are so com-
mon, a special branch ofmathematics called

linear programming (LP) has evolved. and
most scientists thought that was as far as they
could go. Sure enough, when other research-
ers independently tried to test Karmarkar's
process. their results were disappointing. At
scientific conferences skeptics attacked the
algorithm's validity as well as Karmarkar's
veracity.
But this story may end with a different

."", ,. l
"-:::Lb-. •

KARMARKAR: SKEPTICS ATTACKED HIS PRECOCIOUS FEAT

I t happens all too often in science. An
obscure researcher announces astunning
breakthrough and achieves instant fame.

But when other scientists try to repeat his
results. they fail. Fame quickly
turns 10 notoriety. and eventually
the episode is all but forgotten.
ThaI seemed to be the case

with Narendra K. Karmarkar. a
young scientist at AT&T Bell
Laboratories. In lale 1984
the 28-year-old researcher
astounded not only the scientific
community bUl also the business
world. He claimed he had
cracked one of the thorniest
aspects of computer-aided
problem-solving. If so, his feat
would have meant an instant
windfall for many big companies.
It could also have pointed to bet-
ler software for small companies
that use computers to help
manage their business.
Karmarkar said he had

discovered a quick way to solve
problems so hideously com-
pJic<Jled that they often defy even
the most powerful super-
computers. Such problems be-
devil a broad range of business
activities. from assessing risk
factors in slock portfolios 10
drawing up production schedules in factories.
Just about any company that distributes prod-
llCls through more than a handful of
warehouses bumps into such problems when
calculating the cheapest routes for getting
goods to customers. Even when the problems
:.lfcn·t terrihly complex. solving them can
chew up so much computer time that the
3nSWer is useless before it's found.

BUSINESS WEEK, September 21, 1987
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AT&T Patents the Algorithm, Announces KORBX

AT&TMarkets Problem Solver, Based
OnMath Whiz's Find, for $8.9Million

By ROGER LOWENSTEIN
SIJJ{( Rtporru ofTHE WALL STREET JOURNAL
NEW YORK-American Telephone &

Telegraph Co. has called its math whiz,
Narendra Kannarkar, a lauer-day Isaac
Newton. Now, it will see ifhe can make the
finn some money.
Four years after AT&T announced an

"astonishing" discovery by the Indian-born
Mr. Kannarkar, it is marketing an $8.9
million problem solver based on his
invention.
DubbedKorbx, the computer-based system

is designed to solve major operational prob·
lems ofboth business and government. AT&T
predicts "substantial" sales for the product,
but outsiders say the price is high and point
out that its commercial viability is unproven.
"At $9 million a system, you're going to

have a small number of users," says Thomas
Magnanti, an operations-research specialist
at Massachusetts Institute of Technology.
"But for very large-scale problems, itmight
make the difference:'
Korbx uses a unique algorithm, or step-by-

step procedure, invented by Mr. Kannarkar,
a 32-year old, an AT&T Bell Laboratories
mathematician.
"U's designed to solve extremely difficult

or previously unsolvable resource-allocation
problems-which can involve hundreds of
thousands of variables-such as personnel
planning, vendor selection, and equipment
scheduling," says Aristides FronistBs, presi-
dent of an AT&T division created to market
Korbx.
Potential Customers might include an

airline trying to detennine how to routemany
planes between numerous cities and an oil
company figuring how to reed diffurent grades
of crude oil into various refineries and have
the best blend of refined products emerge.
AT&T says that fewer than 10 companies,

which it won't name, are alreadyusingKorbx.
It adch that, because ofthe price, it is targeting

only very large companies-mostly in the
Fortune 100.
Korbx "won't have asignificant bottom-line

impact initially" for AT&T. though it might
in the long tenn, says Charles Nichols. an
analyst with Bear, Stearns & Co. "They will
have to expose it to users and demonstrate"
it uses.
AMR Corp.'s American Airlines says it's

considering buying AT&T's system. Like
other airlines, the Fort Worth, Texas, carrier
has the complex task of scheduling pilots,
crews and flight attendants on thousands of
flights every month.
Thomas M.Cook, head of operations

research at American, says, "Every airline
has programs that do this. The question is:
Can AT&T do it better and faster? The jury is
still out,"
The U.S. Air Force says it is considering us-

ing the system at the Scon Air Force Base in
Illinois.
One reason ror the uncertainty is that AT&T

has, for reasons of commercial secrecy,
deliberately kept the specifics of Mr. Kar-
markar's algorithm under wraps.
"I don't know the details of their system,"

says Eugene Bryan, president of Decision
Dynamics Inc., a Portland, are., consulting
finn that specializes in linear programming,
a mathematical technique that employs a
series of equations using many variables to
find the most efficient way nf allocating
resources.
Mr. Bryan says, though. that if the !Car-

markar system works, itwould be extremely
useful. "For every dollar you spend on op-
timization," he says, "you usually get them
back many-fold."
AT&T has used the system in-house to help

design equipment and routes on its Pacific
Basin system, which involves 22 countries.
It's also being used to plan AT&T's evolving
domestic network, a problem involving some
800.000 variables.

THE WALL STREET JOURNAL, August 15, 1988
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What Makes LP Hard?

Primal

maximize cTx

subject to Ax + w= b

x, w≥ 0

Dual

minimize bTy

subject to ATy − z = c

y, z≥ 0

Complementarity Conditions

xjzj = 0 j = 1, 2, . . . , n

wiyi = 0 i = 1, 2, . . . ,m
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Matrix Notation

Can’t write xz = 0. In mathematics, the product xz is undefined.

In MATLAB, they use this notation: x . ∗ z

In PYTHON, they use this notation: multiply(x, z)

But, in the world of optimization, a different notation is used:

x =


x1

x2
...
xn

 =⇒ X =


x1

x2
. . .

xn



Then the complementarity conditions can be written as:

XZe = 0

WY e = 0
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Optimality Conditions

Ax + w = b

ATy − z = c

ZXe = 0

WY e = 0

w, x, y, z ≥ 0

Ignore (temporarily) the nonnegativities.

2n + 2m equations in 2n + 2m unknowns.

Solve’em.

Hold on. Not all equations are linear.

It is the nonlinearity of the complementarity conditions that makes LP fundamentally
harder than solving systems of equations.

6



The Interior-Point Paradigm

Since we’re ignoring nonnegativities, it’s best to replace complementarity with
µ-complementarity:

Ax + w = b

ATy − z = c

ZXe = µe

WY e = µe

Start with an arbitrary (positive) initial guess: x, y, w, z.

Introduce step directions: ∆x, ∆y, ∆w, ∆z.

Write the above equations for x + ∆x, y + ∆y, w + ∆w, and z + ∆z:

A(x + ∆x) + (w + ∆w) = b

AT (y + ∆y)− (z + ∆z) = c

(Z + ∆Z)(X + ∆X)e = µe

(W + ∆W )(Y + ∆Y )e = µe
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Paradigm Continued

Rearrange with “delta” variables on left and drop nonlinear “delta” terms:

A∆x + ∆w = b− Ax− w
AT∆y −∆z = c− ATy + z

Z∆x + X∆z = µe− ZXe
W∆y + Y∆w = µe−WY e

This is a linear system of 2m + 2n equations in 2m + 2n unknowns.

Solve’em.

Dampen the step lengths, if necessary, to maintain positivity.

Step to a new point:

x ←− x + θ∆x

y ←− y + θ∆y

w ←− w + θ∆w

z ←− z + θ∆z

Here, θ is the scalar damping factor: 0 < θ ≤ 1.
8



Paradigm Continued

Pick a smaller value of µ for the next iteration.

Repeat from beginning until current solution satisfies, within a tolerance, optimality
conditions:

primal feasibility: b− Ax− w = 0.

dual feasibility: c− ATy + z = 0.

duality gap: bTy − cTx = 0.

Theorem.

• Primal infeasibility gets smaller by a factor of 1− θ at every iteration.

• Dual infeasibility gets smaller by a factor of 1− θ at every iteration.

• If primal and dual are feasible, then duality gap decreases by a factor of 1 − θ at every
iteration (if µ = 0, slightly slower convergence if µ > 0).

9



loqo

Hard/impossible to “do” an interior-point method by hand.

Yet, easy to program on a computer (solving large systems of equations is routine).

LOQO implements an interior-point method.

Setting option loqo options ’verbose=2’ in AMPL produces the following
“typical” output:

10



loqo Output

Using loqo to solve Netlib problem scsd6...

variables: non-neg 1350, free 0, bdd 0, total 1350
constraints: eq 146, ineq 0, ranged 0, total 146

nonzeros: A 5288, Q 0

nonzeros: L 7953, arith_ops 101444

---------------------------------------------------------------------------

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -7.8000000e+03 1.55e+03 5.5076028e-01 4.02e+01

2 2.6725737e+05 7.84e+01 1.0917132e+00 1.65e+00

3 1.1880365e+05 3.92e+00 4.5697310e-01 2.02e-13 DF

4 6.7391043e+03 2.22e-01 7.2846138e-01 1.94e-13 DF

5 9.5202841e+02 3.12e-02 5.4810461e+00 1.13e-14 DF

6 2.1095320e+02 6.03e-03 2.7582307e+01 4.15e-15 DF

7 8.5669013e+01 1.36e-03 4.2343105e+01 2.48e-15 DF

8 5.8494756e+01 3.42e-04 4.6750024e+01 2.73e-15 1 DF

9 5.1228667e+01 8.85e-05 4.7875326e+01 2.59e-15 1 DF

10 4.9466277e+01 2.55e-05 4.8617380e+01 2.86e-15 2 DF

11 4.8792989e+01 1.45e-06 4.8736603e+01 2.71e-15 3 PF DF

12 4.8752154e+01 7.26e-08 4.8749328e+01 3.36e-15 4 PF DF

13 4.8750108e+01 3.63e-09 4.8749966e+01 3.61e-15 6 PF DF

14 4.8750005e+01 1.81e-10 4.8749998e+01 2.91e-15 7 PF DF

15 4.8750000e+01 9.07e-12 4.8750000e+01 3.21e-15 8 PF DF

----------------------

OPTIMAL SOLUTION FOUND
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A Generalizable Framework

Start with an optimization problem—in this
case LP: maximize cTx

subject to Ax≤ b

x≥ 0

Use slack variables to make all inequality
constraints into nonnegativities: maximize cTx

subject to Ax + w= b

x, w≥ 0

Replace nonnegativity constraints with logarithmic barrier terms in the objective:

maximize cTx + µ
∑

j log xj + µ
∑

i logwi

subject to Ax + w= b

12



Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x,w, y) = cTx + µ
∑
j

log xj + µ
∑
i

logwi + yT (b− Ax− w)

Set derivatives to zero:

c + µX−1e− ATy = 0 (deriv wrt x)

µW−1e− y = 0 (deriv wrt w)

b− Ax− w = 0 (deriv wrt y)

Introduce dual complementary variables:

z = µX−1e

Rewrite system:

c + z − ATy = 0

XZe = µe

WY e = µe

b− Ax− w = 0

13



Logarithmic Barrier Functions

Plots of µ log x for various values of µ:

x

µ=0.5�

µ=1�

µ=2�

µ=0.2� 5
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Lagrange Multipliers

maximize f (x)

subject to g(x) = 0

g=� 0
x* ∆f

�

maximize f (x)

subject to g1(x) = 0

g2(x) = 0

g1=0

x*

g2=0

∆g2

∆g1

∆f
�

∆f
�
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Classes of Optimization Problems

Op#miza#on	
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Classes of Optimization Problems

Op#miza#on	

Linear	 Nonlinear	
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Classes of Optimization Problems

Op#miza#on	

Linear	

Convex	

Non-convex	
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Classes of Optimization Problems

Op#miza#on	

Linear	

Convex	

Non-convex	

Integer	LP	
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Classes of Optimization Problems

Op#miza#on	

Linear	

Convex	

Non-convex	

Integer	LP	

SIMPLEX	METHOD	
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Classes of Optimization Problems

Op#miza#on	

Linear	

Convex	

Non-convex	

Integer	LP	

INTERIOR-POINT	METHOD	
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