ORF 307: Lecture 2

Linear Programming: Chapter 2 Simplex Methods

Robert Vanderbei

February 8, 2018

Slides last edited on February 8, 2018

Simplex Method for LP

An Example.

Rewrite with Slack Variables

maximize
$$\zeta = -x_1 + 3x_2 - 3x_3$$
 subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$ $x_1, x_2, x_3, w_1, w_2, w_3, w_4, w_5 \geq 0$

Rewrite with Slack Variables

maximize
$$\zeta = -x_1 + 3x_2 - 3x_3$$
 subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$ $x_1, x_2, x_3, w_1, w_2, w_3, w_4, w_5 \ge 0$

Notes:

- This layout is called a *dictionary*: the variables on the left are "defined" in terms of the variables on the right.
- We will use the Greek letter ζ for the *objective function*.
- Dependent variables, on the left, are called *basic variables*.
- Independent variables, on the right, are called *nonbasic variables*.
- Setting x_1 , x_2 , and x_3 to 0, we can read off the values for the other variables: $w_1 = 7$, $w_2 = 3$, etc. This specific "solution" is called a *basic solution* (aka *dictionary solution*). It's called a solution because it is one of many solutions to the system of linear equations. We are not implying that it is a solution to the optimization problem. We will call that the *optimal solution*.

Basic Solution is Feasible

We got lucky!

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 0$, $w_1 = 7$, $w_2 = 3$, $w_3 = 4$, $w_4 = 8$, $w_5 = 5$

maximize
$$\zeta = -x_1 + 3x_2 - 3x_3$$
 subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$ $x_1, x_2, x_3, w_1, w_2, w_3, w_4, w_5 \ge 0$.

Notes:

- All the variables in the current basic solution are nonnegative.
- Such a solution is called *feasible*.
- The initial basic solution need not be feasible—we were just lucky above.

Simplex Method—First Iteration

- If x_2 increases, obj goes up.
- How much can x_2 increase? Until w_4 decreases to zero.
- Do it. End result: $x_2 > 0$ whereas $w_4 = 0$.
- That is, x_2 must become *basic* and w_4 must become *nonbasic*.
- Algebraically rearrange equations to, in the words of Jean-Luc Picard, "Make it so."
- This is a *pivot*.

A Pivot: $x_2 \leftrightarrow w_4$

becomes

Simplex Method—Second Pivot

Here's the dictionary after the first pivot:

- Now, let x_1 increase.
- Of the basic variables, w_5 hits zero first.
- So, x_1 enters and w_5 leaves the basis.
- New dictionary is...

Simplex Method—Final Dictionary

- It's optimal (no pink)!
- Click here to practice the simplex method.
- Click here to solve some "challenge" problems.

Agenda

• Discuss *unboundedness*; (today)

• Discuss initialization/infeasibility; i.e., what if initial dictionary is not feasible. (today)

• Discuss *degeneracy*. (next lecture)

Unboundedness

Consider the following dictionary:

- Could increase either x_1 or x_3 to increase obj.
- Consider increasing x_1 .
- Which basic variable decreases to zero first?
- \bullet Answer: none of them, x_1 can go off to infinity, and obj along with it.
- This is how we detect *unboundedness* with the simplex method.

Unbounded or Not?

maximize
$$x_1 + 2x_2$$
 subject to $-x_1 + x_2 \le 1$ $x_1 - 2x_2 \le 2$ $x_1, x_2 \ge 0$.

Questions:

- 1. Is initial basic solution feasible or not?
- 2. Does the initial dictionary show the problem to be unbounded or not?
- 3. Is the problem unbounded or not?
- 4. How can we tell?

Unbounded or Not?

maximize
$$x_1 + 2x_2$$
 subject to $-x_1 + x_2 \le 1$ $x_1 - 2x_2 \le 2$ $x_1, x_2 \ge 0$.

Check out this python notebook:

 $http://www.princeton.edu/\sim rvdb/307/python/PrimalSimplex2.ipynb$

Unbounded or Not?

maximize
$$x_1 + 2x_2$$
 subject to $-x_1 + x_2 \le 1$ $x_1 - 2x_2 \le 2$ $x_1, x_2 \ge 0$.

Initialization

Consider the following problem:

maximize
$$-3x_1 + 4x_2$$

subject to $-4x_1 - 2x_2 \le -8$
 $-2x_1 \le -2$
 $3x_1 + 2x_2 \le 10$
 $-x_1 + 3x_2 \le 1$
 $-3x_2 \le -2$
 $x_1, x_2 \ge 0$

Phase-I Problem

- \bullet Modify problem by subtracting a new variable, x_0 , from each constraint and
- replacing objective function with $-x_0$

Phase-I Problem

maximize
$$-x_0$$
 subject to $-x_0 - 4x_1 - 2x_2 \le -8$ $-x_0 - 2x_1 \le -2$ $-x_0 + 3x_1 + 2x_2 \le 10$ $-x_0 - x_1 + 3x_2 \le 1$ $-x_0 - 3x_2 \le -2$ $x_0, x_1, x_2 \ge 0$

- Current basic solution is infeasible. But...
- Problem is clearly feasible: pick x_0 large, $x_1 = 0$ and $x_2 = 0$.
- If optimal solution has obj = 0, then original problem is feasible.
- Final phase-I dictionary can be used as initial *phase-II* dictionary (ignoring x_0 thereafter).
- If optimal solution has obj < 0, then original problem is infeasible.

Initialization—First Pivot

Applet depiction shows both the Phase-I and the Phase-II objectives:

- Dictionary is infeasible even for Phase-I.
- One pivot needed to get feasible.
- Entering variable is x_0 .
- Leaving variable is one whose current value is most negative, i.e. w_1 .
- After first pivot...

Initialization—Second Pivot

Going into second pivot:

- Feasible!
- Focus on the yellow highlights.
- Let x_1 enter.
- Then w_5 must leave.
- After second pivot...

Initialization—Third Pivot

Going into third pivot:

- x_2 must enter.
- x_0 must leave.
- After third pivot...

End of Phase-I

Current dictionary:

- Optimal for Phase-I (no yellow highlights).
- obj = 0, therefore original problem is feasible.

Phase-II

Current dictionary:

For Phase-II:

- Ignore column with x_0 in Phase-II.
- Ignore Phase-I objective row.

 w_5 must enter. w_4 must leave...

Optimal Solution

- Optimal!
- Click here to practice the simplex method on problems that may have infeasible first dictionaries.

Solve This Problem

maximize
$$-2x_1+x_2$$
 subject to $-x_1+x_2\leq 1$ $-2x_1-x_2\leq -4$ $x_1,\ x_2\geq 0.$

Use the two-phase simplex method to solve this problem.

