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Portfolio Optimization: Markowitz Shares the 1990
Nobel Prize Press Release - The Sveriges Riksbank (Bank of Sweden) Prize in Economic Sciences

in Memory of Alfred Nobel

KUNGL. VETENSKAPSAKADEMIEN 
THE ROYAL SWEDISH ACADEMY OF SCIENCES

16 October 1990 

THIS YEAR’S LAUREATES ARE PIONEERS IN THE THEORY OF FINANCIAL ECONOMICS
AND CORPORATE FINANCE

The Royal Swedish Academy of Sciences has decided to award the 1990 Alfred Nobel Memorial Prize
in Economic Sciences with one third each, to 

Professor Harry Markowitz, City University of New York, USA,
Professor Merton Miller, University of Chicago, USA,
Professor William Sharpe, Stanford University, USA,

for their pioneering work in the theory of financial economics.

Harry Markowitz is awarded the Prize for having developed the theory of portfolio choice; 
William Sharpe, for his contributions to the theory of price formation for financial assets, the so-called,
Capital Asset Pricing Model (CAPM); and
Merton Miller, for his fundamental contributions to the theory of corporate finance. 

Summary
Financial markets serve a key purpose in a modern market economy by allocating productive resources
among various areas of production. It is to a large extent through financial markets that saving in
different sectors of the economy is transferred to firms for investments in buildings and machines.
Financial markets also reflect firms’ expected prospects and risks, which implies that risks can be spread
and that savers and investors can acquire valuable information for their investment decisions. 

The first pioneering contribution in the field of financial economics was made in the 1950s by Harry
Markowitz who developed a theory for households’ and firms’ allocation of financial assets under
uncertainty, the so-called theory of portfolio choice. This theory analyzes how wealth can be optimally
invested in assets which differ in regard to their expected return and risk, and thereby also how risks can
be reduced. 

  Copyright© 1998 The Nobel Foundation 
 For help, info, credits or comments, see "About this project" 

  Last updated by Webmaster@www.nobel.se / February 25, 1997 
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Historical Data—Some ETF Prices

Notation: Sj(t) = share price for investment j at time t.
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Return Data: Rj(t) = Sj(t)/Sj(t− 1)

Important observation: volatility is easy to see, mean return is lost in the noise.
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Risk vs. Reward

Reward: Estimated using historical means:

rewardj =
1

T

T∑
t=1

Rj(t).

Risk: Markowitz defined risk as the variability of the returns as measured by the historical
variances:

riskj =
1

T

T∑
t=1

(
Rj(t)− rewardj

)2
.

However, to get a linear programming problem (and for other reasons) we use the
sum of the absolute values instead of the sum of the squares:

riskj =
1

T

T∑
t=1

∣∣Rj(t)− rewardj

∣∣ .
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Why Make a Portfolio? ... Hedging

Investment A: Up 20%, down 10%, equally likely—a risky asset.

Investment B: Up 20%, down 10%, equally likely—another risky asset.

Correlation: Up-years for A are down-years for B and vice versa.

Portfolio: Half in A, half in B: up 5% every year! No risk!
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Explain

Explain the 5% every year claim.

6



Return Data: 50 days around 01/01/2014

Date
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Note: Not much negative correlation in price fluctuations. An up-day is an up-day and a
down-day is a down-day. 7



Portfolios

Fractions: xj = fraction of portfolio to invest in j

Portfolio’s Historical Returns: Rx(t) =
∑
j

xjRj(t)

Portfolio’s Reward: reward(x) =
1

T

T∑
t=1

Rx(t) =
1

T

T∑
t=1

∑
j

xjRj(t)

=
∑
j

xj

1

T

T∑
t=1

Rj(t) =
∑
j

xj rewardj
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What’s a Good Formula for the Portfolio’s Risk?
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Portfolio’s Risk:

risk(x) =
1

T

T∑
t=1

(
Rx(t)− reward(x)

)2

=
1

T

T∑
t=1

∑
j

xjRj(t)−
1

T

T∑
s=1

∑
j

xjRj(s)

2

=
1

T

T∑
t=1

∑
j

xj

Rj(t)−
1

T

T∑
s=1

Rj(s)




2

=
1

T

T∑
t=1

∑
j

xj(Rj(t)− rewardj)

2
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A Markowitz-Type Model

Decision Variables: the fractions xj.

Objective: maximize return, minimize risk.

Fundamental Lesson: can’t simultaneously optimize two objectives.

Compromise: set a lower bound µ for reward and minimize risk subject to this bound con-
straint:

• Parameter µ is called reward happiness parameter.

• Small value for µ puts emphasis on risk minimization.

• Large value for µ puts emphasis on reward maximization.

Constraints:

1

T

T∑
t=1

∑
j

xjRj(t) ≥ µ∑
j

xj = 1

xj ≥ 0 for all j
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Optimization Problem

minimize
1

T

T∑
t=1

∑
j

xj(Rj(t)− rewardj)

2

subject to
1

T

T∑
t=1

∑
j

xjRj(t)≥ µ∑
j

xj = 1

xj ≥ 0 for all j
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AMPL: Model

reset;

set Assets; # asset categories

set Dates; # dates

param T := card(Dates);

param mu;

param R {Dates,Assets};

param mean {j in Assets} := ( sum{t in Dates} R[t,j] )/T;

param Rdev {t in Dates, j in Assets} := R[t,j] - mean[j];

param variance {j in Assets} := ( sum{t in Dates} Rdev[t,j]^2 )/T;

var x{Assets} >= 0;

minimize risk: sum{t in Dates} (sum{j in Assets} Rdev[t,j]*x[j])^2 / T;

s.t. reward_bound: sum{j in Assets} mean[j]*x[j] >= mu;

s.t. tot_mass: sum{j in Assets} x[j] = 1;
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AMPL: Data

data;

set Assets := mdy xlb xli xlu spy qqq xle xlk xlv xlf xlp xly;

set Dates := include 'dates';

param R: mdy xlb xli xlu spy qqq xle xlk xlv xlf xlp xly :=

include 'returns.data' ;

printf {j in Assets}: "%10.7f %10.5f \n",

mean[j]^(12), sum{t in Dates} (Rdev[t,j])^2/T > "assets";
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AMPL: Solve, and Print

set assets_min_var ordered := {j in Assets: variance[j] == min {jj in Assets} variance[jj]};

param maxmean := max {j in Assets} mean[j];

param minmean := mean[first(assets_min_var)];

display mean, variance;

display minmean, maxmean;

printf {j in Assets}: " %5s ", j > "portfolio_minrisk";

printf " | reward risk \n" > "portfolio_minrisk";

for {k in 0..20} {

display k;

let mu := (k/20)*minmean + (1-k/20)*maxmean;

solve;

printf {j in Assets}: "%7.4f ", x[j] > "portfolio_minrisk";

printf " | %7.4f %7.4f \n",

(sum{j in Assets} mean[j]*x[j])^(12),

sum{t in Dates} (sum{j in Assets} Rdev[t,j]*x[j])^2 / T

> "portfolio_minrisk";

}
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Efficient Frontier

Varying risk bound µ produces the so-called efficient frontier.

Portfolios on the efficient frontier are reasonable.

Portfolios not on the efficient frontier can be strictly improved.

XLU XLB XLI XLV XLF XLE MDY XLK XLY XLP QQQ SPY Risk Reward
1.00000 0.00715 1.00063
0.91073 0.08927 0.00705 1.00063
0.80327 0.19673 0.00696 1.00063
0.64003 0.35997 0.00686 1.00063
0.52089 0.03862 0.44049 0.00676 1.00062
0.50041 0.01272 0.06919 0.41768 0.00667 1.00062
0.48484 0.04132 0.07129 0.40254 0.00657 1.00061
0.46483 0.06857 0.07658 0.39002 0.00647 1.00060
0.44030 0.09633 0.08232 0.38105 0.00638 1.00059
0.42825 0.12917 0.08171 0.36086 0.00628 1.00059
0.39737 0.16114 0.08506 0.35643 0.00619 1.00058
0.36890 0.19318 0.09133 0.34659 0.00609 1.00057
0.33802 0.22223 0.00451 0.09494 0.34030 0.00599 1.00056
0.29959 0.23687 0.01707 0.10664 0.33984 0.00590 1.00055
0.27975 0.26587 0.02543 0.10951 0.31943 0.00580 1.00054
0.25688 0.28212 0.03974 0.12461 0.29666 0.00570 1.00053
0.24677 0.30348 0.05438 0.13634 0.25903 0.00561 1.00052
0.23570 0.32960 0.07273 0.13670 0.22527 0.00551 1.00051
0.21978 0.36630 0.09093 0.12719 0.19580 0.00541 1.00049
0.21069 0.40713 0.10881 0.12695 0.14641 0.00532 1.00048
0.18010 0.46128 0.12077 0.13760 0.10025 0.00522 1.00046
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Efficient Frontier
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Downloading the AMPL model and data

AMPL Model:

https://vanderbei.princeton.edu/307/ampl/markL2 minrisk.txt

List of dates:

https://vanderbei.princeton.edu/307/ampl/dates.txt

Monthly return data:

https://vanderbei.princeton.edu/307/ampl/returns.txt

Data from

Yahoo Groups Finance
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Alternative Formulation

Maximize reward subject to a bound on risk and use least absolute deviations as the risk
measure:

maximize
1

T

T∑
t=1

∑
j

xjRj(t)

subject to
1

T

T∑
t=1

∣∣∣∣∣∣
∑
j

xj(Rj(t)− rewardj)

∣∣∣∣∣∣≤ µ∑
j

xj = 1

xj ≥ 0 for all j

Because of absolute values not a linear programming problem.

Easy to convert...
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Main Idea For The Conversion

Using the “greedy substitution”, we introduce new variables to represent the troublesome
part of the problem

yt =

∣∣∣∣∣∣
∑
j

xj(Rj(t)− rewardj)

∣∣∣∣∣∣
to get

maximize
1

T

T∑
t=1

∑
j

xjRj(t)

subject to

∣∣∣∣∣∣
∑
j

xj(Rj(t)− rewardj)

∣∣∣∣∣∣= yt for all t

1

T

T∑
t=1

yt ≤ µ∑
j

xj = 1

xj ≥ 0 for all j.

We then note that the constraint defining yt can be relaxed to a pair of inequalities:

−yt ≤
∑
j

xj(Rj(t)− rewardj) ≤ yt.
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A Linear Programming Formulation

maximize
1

T

T∑
t=1

∑
j

xjRj(t)

subject to −yt ≤
∑
j

xj(Rj(t)− rewardj)≤ yt for all t

1

T

T∑
t=1

yt ≤ µ∑
j

xj = 1

xj ≥ 0 for all j
yt ≥ 0 for all t
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