
ORF 307: Lecture 4

Linear Programming: Chapter 3
Degeneracy

Robert Vanderbei

February 14, 2019

Slides last edited on February 14, 2019

https://vanderbei.princeton.edu

https://vanderbei.princeton.edu


Solve This...

maximize 2x1 + 3x2

subject to x1 + 2x2 ≤ 8
x1 − x2 ≤ 4
−x1 + x2 ≤ 4

x1, x2 ≥ 0.

1



Solution

⇓ Enter: x2, Leave: w3

⇓ Enter: x1, Leave: w1

⇓ Enter: w3, Leave: w2

Note: The horizontal axis, which one might
call the x1-axis, is where x2 = 0 and is
labeled as such.

In (x1, x2) coordinates, the pivots visit the
following vertices:

(0, 0) =⇒ (0, 1) =⇒ (0, 1) =⇒ (4/3, 1/3).

Note that the second pivot went nowhere. 2



Degeneracy

Definitions.

A dictionary is degenerate if one or more “rhs”-value vanishes.

Example:

ζ = 6 + w3 + 5x2 + 4w1

x3 = 1 − 2w3 − 2x2 + 3w1

w2 = 4 + w3 + x2 − 3w1

x1 = 3 − 2w3

w4 = 2 + w3 − w1

w5 = 0 − x2 + w1

A pivot is degenerate if the objective function value does not change.

Examples (based on above dictionary):

1. If x2 enters, then w5 must leave, pivot is degenerate.

2. If w1 enters, then w2 must leave, pivot is not degenerate.

3



Cycling

A cycle is a sequence of pivots that returns to the dictionary from which the cycle began.

Note: Every pivot in a cycle must be degenerate. Why?

Pivot Rules

A pivot rule is an explicit statement for how one chooses entering and leaving variables (when
a choice exists).

Some Examples:

Largest-Coefficient Rule. (most common pivot rule for entering variable)

Choose the variable with the largest coefficient in the objective function.

Random Positive-Coefficient Rule.

Among all nonbasic variables having a positive coefficient, choose one at random.

First Encountered Rule.

In scanning the nonbasic variables, stop with the first one whose coefficient is positive.

4



Hope

Some pivot rule, such as the largest coefficient rule, will be proven never to cycle.

An example that cycles using the following pivot rules:

• entering variable: largest-coefficient rule.

• leaving variable: smallest-index rule.

ζ = x1 − 2x2 − 2x4

w1 = − 0.5x1 + 3.5x2 + 2x3 − 4x4

w2 = − 0.5x1 + x2 + 0.5x3 − 0.5x4

w3 = 1 − x1 .

Here’s a demo of cycling (ignoring the last constraint)...

5



Hope

Some pivot rule, such as the largest coefficient rule, will be proven never to cycle.

Hope Fades

An example that cycles using the following pivot rules:

• entering variable: largest-coefficient rule.

• leaving variable: smallest-index rule.

ζ = x1 − 2x2 − 2x4

w1 = − 0.5x1 + 3.5x2 + 2x3 − 4x4

w2 = − 0.5x1 + x2 + 0.5x3 − 0.5x4

w3 = 1 − x1 .

Here’s a demo of cycling (ignoring the last constraint)...

6



⇓ Enter: x1, Leave: w1

⇓ Enter: x2, Leave: w2

⇓ Enter: x3, Leave: x1

⇓ Enter: x4, Leave: x2

7



⇓ Enter: w1, Leave: x3

⇓ Enter: w2, Leave: x4

Cycling is rare for small problems! A program that generates random 2× 4 fully degenerate
problems was run more than one billion times and did not find one example!

However, for larger problems with lots of zeros, cycling is common and can be a real problem.

8



Algebra of a Pivot

b a

d c

pivot−→

−b
a

1

a

d− bc

a

c

a

9



AMPL Code
param m := 2;

param n := 4;

param c {1..n}; param A {1..m, 1..n};
param nonbasics {1..n}; param basics {1..m};
param row; param col;
param ii; param jj;
param Arow {1..n}; param Acol {1..m};
param cj; param bi;
param a; param ccol;
param iter;

for {k in 1..1000000000} {
let {i in 1..m, j in 1..n} A[i,j] := Normal01();
let {j in 1..n} c[j] := Normal01();
let {j in 1..n} nonbasics[j] := j;
let {i in 1..m} basics[i] := n+i;
display k;

let iter := 1;
repeat while (max {j in 1..n} c[j] > 0) {

let cj := 0;
for {j in 1..n} {

if (c[j] > cj) then {
let col := j;
let cj := c[j];

}
}
let jj := nonbasics[col];

let bi := m+n+1;
for {i in 1..m: A[i,jj] < -1e-8} {

if (basics[i] < bi) then {
let bi := basics[i];
let row := i;

}
}
if bi > m+n then {break;} # unbounded polytope
let ii := basics[row];

let {j in 1..n} Arow[j] := A[row,j];

let {i in 1..m} Acol[i] := A[i,col];
let a := A[row,col];

let {i in 1..m, j in 1..n}
A[i,j] := A[i,j] - Acol[i]*Arow[j]/a;

let {j in 1..n} A[row,j] := -Arow[j]/a;
let {i in 1..m} A[i,col] := Acol[i]/a;
let A[row,col] := 1/a;

let ccol := c[col];
let {j in 1..n} c[j] := c[j] - ccol*Arow[j]/a;
let c[col] := ccol/a;

let basics[row] := jj;
let nonbasics[col] := ii;

if iter > 15 then {
display "found a cycling example";
break;

}

let iter := iter+1;
}

}

19



Perturbation Method

Whenever a vanishing “rhs” appears perturb it.
If there are lots of them, say k, perturb them all.
Make the perturbations at different scales:

other data� ε1 � ε2 � · · · � εk > 0.

An Example.

Entering variable: x2

Leaving variable: w2

20



Perturbation Method—Example Con’t.

Recall current dictionary:

Entering variable: x1

Leaving variable: w3

DONE!

21



Perturbation Method Applied to Cycling Example

⇓ x1 enters, w2 leaves

⇓ x2 enters, w1 leaves

⇓ x3 enters, x2 leaves

⇓ w2 enters, problem unbounded!

Note: objective function increases with every pivot: 0 < 2ε2 < 2ε1 <
8
3
ε1 − 2

3
ε2 22



Other Pivot Rules

Smallest Index Rule.

Choose the variable with the smallest index (the x variables are assumed to be
“before” the w variables).

Note: Also known as Bland’s rule.

No cycling (it’s been proved).

Random Selection Rule.

Select at random from the set of possibilities.

No infinite cycles.

Greatest Increase Rule.

Pick the entering/leaving pair so as to maximize the increase of the objective function
over all other possibilities.

Note: Too much computation.

Needs a tie-breaking rule.

23



Theoretical Results

Cycling Theorem. If the simplex method fails to terminate, then it must cycle.

Why?

Fundamental Theorem of Linear Programming. For an arbitrary linear program in standard
form, the following statements are true:

1. If there is no optimal solution, then the problem is either infeasible or unbounded.

2. If a feasible solution exists, then a basic feasible solution exists.

3. If an optimal solution exists, then a basic optimal solution exists.

24



Geometry

maximize x1 + 2x2 + 3x3
subject to x1 + 2x3 ≤ 3

x2 + 2x3 ≤ 2
x1, x2, x3 ≥ 0

1 2
x2

x3

x1

x1+2x3=3

x2+2x3=2x2=0

maximize x1 + 2x2 + 3x3
subject to x1 + 2x3 ≤ 2

x2 + 2x3 ≤ 2
x1, x2, x3 ≥ 0

1
x2

x3

x1

x1+2x3=2

x2=0

x2+2x3=2

25


