ORF 307: Lecture 7

Linear Programming: Chapter 5 Duality II

Robert Vanderbei

Feb 26, 2019

Slides last edited on February 28, 2019

ORFENTERTAINMENT THURSDAY FEBRUARY 28TH 7:30 PM SHERRERD HALL ATRIUM

ALL ARE WELCOME, PRIZES, FOOD, FUN

PERFORMANCE TIMES ARE STILL AVAILABLE... IT'S NOT TOO LATE TO SIGN UP!!!

NEW THIS YEAR KARAOKE!!!

CONTACT TZGLER@PRINCETONEDU

Complementary Slackness

Primal Problem:

$\max \quad \sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{j=1}^{n} a_{ij}x_j + w_i = b_i \quad i = 1, ..., m$ $x_j \ge 0 \quad j = 1, ..., n$ $y_i \ge 0 \quad i = 1, ..., m$ $z_j \ge 0 \quad j = 1, ..., m$

Dual Problem:

$$\min \quad \sum_{i=1}^m b_i y_i$$
 s.t.
$$\sum_{i=1}^m y_i a_{ij} - z_j = c_j \quad j=1,\dots,n$$

$$y_i \geq 0 \quad i=1,\dots,m$$

$$z_j \geq 0 \quad j=1,\dots,n$$

Theorem. At optimality, we have

$$x_j z_j = 0,$$
 for $j = 1, 2, ..., n,$
 $w_i y_i = 0,$ for $i = 1, 2, ..., m.$

Proof

Recall the proof of the Weak Duality Theorem:

$$\sum_{j} c_j x_j \leq \sum_{j} (c_j + z_j) x_j = \sum_{j} \left(\sum_{i} y_i a_{ij} \right) x_j = \sum_{ij} y_i a_{ij} x_j$$
$$= \sum_{i} \left(\sum_{j} a_{ij} x_j \right) y_i = \sum_{i} (b_i - w_i) y_i \leq \sum_{i} b_i y_i,$$

The inequalities come from the fact that

$$x_j z_j \ge 0$$
, for all j , $w_i y_i \ge 0$, for all i .

By Strong Duality Theorem, the inequalities are equalities at optimality.

Dual Simplex Method

Dual Simplex Method

When: dual feasible, primal infeasible (i.e., pinks on the left, not on top).

An Example. Showing both primal and dual dictionaries:

Looking at dual dictionary: y_3 enters, z_2 leaves.

On the primal dictionary: w_3 leaves, x_2 enters.

After pivot...

Dual Simplex Method: Second Pivot

Going in, we have:

maximize
$$-\xi = \begin{bmatrix} 6 \\ + \end{bmatrix} + \begin{bmatrix} 2 \\ y_1 \\ + \end{bmatrix} + \begin{bmatrix} 8 \\ y_2 \\ + \end{bmatrix} + \begin{bmatrix} -2 \\ z_2 \\ \end{bmatrix}$$

$$z_1 = \begin{bmatrix} 8 \\ - \end{bmatrix} - \begin{bmatrix} -2 \\ y_1 \\ - \end{bmatrix} - \begin{bmatrix} 4 \\ y_2 \\ - \end{bmatrix} - \begin{bmatrix} -1 \\ z_2 \\ \end{bmatrix}$$

$$y_3 = \begin{bmatrix} 3/2 \\ - \end{bmatrix} - \begin{bmatrix} -1/2 \\ y_1 \\ - \end{bmatrix} - \begin{bmatrix} -3/2 \\ y_2 \\ - \end{bmatrix} - \begin{bmatrix} 1/2 \\ z_2 \\ \end{bmatrix}$$

$$z_3 = \begin{bmatrix} 11 \\ - \end{bmatrix} - \begin{bmatrix} -4 \\ y_1 \\ - \end{bmatrix} - \begin{bmatrix} -8 \\ y_2 \\ - \end{bmatrix} - \begin{bmatrix} 3 \\ z_2 \\ \end{bmatrix}$$

$$z_4 = \begin{bmatrix} 15/2 \\ - \end{bmatrix} - \begin{bmatrix} 5/2 \\ y_1 \\ - \end{bmatrix} - \begin{bmatrix} -3/2 \\ y_2 \\ - \end{bmatrix} - \begin{bmatrix} 1/2 \\ z_2 \\ \end{bmatrix}$$

Looking at dual: y_2 enters, z_1 leaves.

Looking at primal: w_2 leaves, x_1 enters.

Dual Simplex Method Pivot Rule

maximize
$$\zeta = \begin{bmatrix} -6 \\ + \end{bmatrix} + \begin{bmatrix} -8 \\ x_1 \\ + \end{bmatrix} + \begin{bmatrix} -3/2 \\ w_3 \\ + \end{bmatrix} + \begin{bmatrix} -11 \\ x_3 \\ + \end{bmatrix} + \begin{bmatrix} -15/2 \\ x_4 \\ + \end{bmatrix} +$$

Referring to the primal dictionary:

- Pick leaving variable from those rows that are *infeasible*.
- Pick entering variable from a box with a negative value and which can be increased the least (on the dual side).

Next primal dictionary shown on next page...

Dual Simplex Method: Third Pivot

Going in, we have:

Which variable must leave and which must enter?

See next page...

Dual Simplex Method: Third Pivot—Answer

Answer is: w_1 leaves, x_4 enters.

Resulting dictionary is OPTIMAL:

maximize
$$\zeta = \begin{bmatrix} -58 \\ + \end{bmatrix} + \begin{bmatrix} -5 \\ w_2 \\ + \end{bmatrix} + \begin{bmatrix} -12 \\ w_3 \\ + \end{bmatrix} + \begin{bmatrix} -75 \\ x_3 \\ + \end{bmatrix} + \begin{bmatrix} -6 \\ w_1 \\ -6 \end{bmatrix} + \begin{bmatrix} -6 \\ w_1 \\ -6 \end{bmatrix} + \begin{bmatrix} -5/14 \\ w_2 \\ + \end{bmatrix} + \begin{bmatrix} -12 \\ w_3 \\ + \end{bmatrix} + \begin{bmatrix} -75 \\ w_3 \\ + \end{bmatrix} + \begin{bmatrix} -75 \\ w_3 \\ + \end{bmatrix} + \begin{bmatrix} -6 \\ w_1 \\ -6 \end{bmatrix} + \begin{bmatrix} -6 \\ w_1 \\ -6$$

Dual-Based Phase I Method

Dual-Based Phase I Method

Example:

 $\mathsf{Seed} = \mathsf{4}$

Notes:

- Two objective functions: the true objective (on top), and a fake one (below it).
- For *Phase I*, use the fake objective—it's *dual feasible*.

Phase I—First Pivot: w_1 leaves, x_3 enters.

Let's go pivoting...

Recall initial dictionary:

Dual pivot: w_1 leaves, x_3 enters.

Recall current dictionary:

Dual pivot: w_4 leaves, x_2 enters.

Recall current dictionary:

Dual pivot: w_2 leaves, x_1 enters.

After pivot:

Feasible!

Current dictionary is feasible:

Ignore fake objective. Use the real objective. Primal pivot: w_1 enters, w_3 leaves.

After pivot:

Getting close:

Primal pivot: w_4 enters, w_1 leaves.

After pivot:

Optimal!

