ORF 307: Lecture 9

Linear Programming: Chapter 6 Matrix Notation

Robert Vanderbei

March 5, 2019

Slides last edited on March 1, 2019

An Example

Consider

$$
\begin{array}{lrr}
\operatorname{maximize} & 3 x_{1}+4 x_{2}-2 x_{3} & \\
\text { subject to } & x_{1}+0.5 x_{2}-5 x_{3} \leq 2 \\
& 2 x_{1}-1 x_{2}+3 x_{3} \leq 3 \\
& & x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Add slacks (using x 's for slack variables):

$$
\begin{aligned}
x_{1}+0.5 x_{2}-5 x_{3}+x_{4} & =2 \\
2 x_{1}-x_{2}+3 x_{3} & =x_{5}
\end{aligned}=3 .
$$

Cast constraints into matrix notation:

$$
\left[\begin{array}{rrr|r}
1 & 0.5 & -5 & 1 \\
0 \\
2 & -1 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\frac{x_{4}}{x_{5}}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Similarly cast objective function:

$$
\left[\begin{array}{r}
3 \\
4 \\
-2 \\
\hline 0 \\
0
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\hline x_{4} \\
x_{5}
\end{array}\right]
$$

In general, we have:

Down the Road

Basic Variables: x_{2}, x_{5}.
Nonbasic Variables: x_{1}, x_{3}, x_{4}.

$$
\begin{aligned}
A x & =\left[\begin{array}{rrrrr}
1 & 0.5 & -5 & 1 & 0 \\
2 & -1 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \\
& =\left[\begin{array}{rr}
x_{1}+0.5 x_{2}-5 x_{3}+x_{4} \\
2 x_{1}- & x_{2}+3 x_{3} \\
& =\left[\begin{array}{rl}
0.5 x_{5}
\end{array}\right] \\
-x_{2}+x_{5} & +2 x_{1}+3 x_{3}
\end{array}\right] \\
& =\left[\begin{array}{rr}
0.5 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{5}
\end{array}\right]+\left[\begin{array}{rrr}
1 & -5 & 1 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& =B x_{\mathcal{B}}+N x_{\mathcal{N}} .
\end{aligned}
$$

General Matrix Notation

Up to a rearrangement of columns,

$$
A \stackrel{\mathrm{R}}{=}\left[\begin{array}{ll}
B & N
\end{array}\right]
$$

Similarly, rearrange rows of x and c :

$$
x \stackrel{\mathrm{R}}{=}\left[\begin{array}{l}
x_{\mathcal{B}} \\
x_{\mathcal{N}}
\end{array}\right] \quad c \stackrel{\mathrm{R}}{=}\left[\begin{array}{l}
c_{\mathcal{B}} \\
c_{\mathcal{N}}
\end{array}\right]
$$

Constraints:

$$
A x=b \quad \Longleftrightarrow \quad B x_{\mathcal{B}}+N x_{\mathcal{N}}=b
$$

Objective:

$$
\zeta=c^{T} x \quad \Longleftrightarrow \quad c_{\mathcal{B}}^{T} x_{\mathcal{B}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}}
$$

Matrix B is $m \times m$ and invertible! Why?

Express $x_{\mathcal{B}}$ and ζ in terms of $x_{\mathcal{N}}$:

$$
\begin{aligned}
x_{\mathcal{B}} & =B^{-1} b-B^{-1} N x_{\mathcal{N}} \\
\zeta & =c_{\mathcal{B}}^{T} x_{\mathcal{B}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}} \\
& =c_{\mathcal{B}}^{T} B^{-1} b-\left(\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}\right)^{T} x_{\mathcal{N}} .
\end{aligned}
$$

Dictionary in Matrix Notation

$$
\begin{aligned}
\zeta & =c_{\mathcal{B}}^{T} B^{-1} b-\left(\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}\right)^{T} x_{\mathcal{N}} \\
x_{\mathcal{B}} & =B^{-1} b-B^{-1} N x_{\mathcal{N}} .
\end{aligned}
$$

$$
\begin{gathered}
B=\left[\begin{array}{ll}
0.5 & 0 \\
-1 & 1
\end{array}\right] \Longrightarrow B^{-1}=\left[\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right] \\
B^{-1} b=\left[\begin{array}{l}
4 \\
7
\end{array}\right] \\
B^{-1} N=\left[\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & 1 \\
2 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrr}
2 & -10 & 2 \\
4 & -7 & 2
\end{array}\right] \\
\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}=\left[\begin{array}{rr}
2 & 4 \\
-10 & -7 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{r}
3 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{r}
5 \\
-38 \\
8
\end{array}\right] \\
c_{\mathcal{B}}^{T} B^{-1} b=\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
7
\end{array}\right]=16
\end{gathered}
$$

$$
\begin{aligned}
& \zeta=3 x_{1}+4 x_{2}-2 x_{3} \\
& \hline x_{4}=2-x_{1}-0.5 x_{2}+5 x_{3} \\
& x_{5}=3-2 x_{1}+x_{2}-3 x_{3}
\end{aligned}
$$

Let x_{2} enter and x_{4} leave.

$$
\begin{aligned}
\zeta & =16-5 x_{1}-8 x_{4}+38 x_{3} \\
\hline x_{2} & =4-2 x_{1}-2 x_{4}+10 x_{3} \\
x_{5} & =7-4 x_{1}-2 x_{4}+7 x_{3}
\end{aligned}
$$

Dual Stuff

Associated Primal Solution:

$$
\begin{aligned}
x_{\mathcal{N}}^{*} & =0 \\
x_{\mathcal{B}}^{*} & =B^{-1} b
\end{aligned}
$$

Dual Variables:

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}, w_{1}, \ldots, w_{m}\right) & \longrightarrow\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \\
\left(z_{1}, \ldots, z_{n}, y_{1}, \ldots, y_{m}\right) & \longrightarrow\left(z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{n+m}\right)
\end{aligned}
$$

Associated Dual Solution:

$$
\begin{aligned}
z_{\mathcal{B}}^{*} & =0 \\
z_{\mathcal{N}}^{*} & =\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}
\end{aligned}
$$

Associated Solution Value:

$$
\zeta^{*}=c_{\mathcal{B}}^{T} B^{-1} b
$$

Primal Dictionary:

$$
\begin{aligned}
\zeta & =\zeta^{*}-z_{\mathcal{N}}^{* T} x_{\mathcal{N}} \\
x_{\mathcal{B}} & =x_{\mathcal{B}}^{*}-B^{-1} N x_{\mathcal{N}}
\end{aligned}
$$

Dual Dictionary:

$$
\begin{aligned}
& -\xi=-\zeta^{*}-x_{\mathcal{B}}^{* T} z_{\mathcal{B}} \\
& z_{\mathcal{N}}=z_{\mathcal{N}}^{*}+\left(B^{-1} N\right)^{T} z_{\mathcal{B}} .
\end{aligned}
$$

Dual of Problems in "Equality" Form

Consider:

$$
\begin{aligned}
\max c^{T} x & \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Rewrite equality constraints as pairs of inequalities:

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
-A x & \leq-b \\
x & \geq 0
\end{aligned}
$$

Put into block-matrix form:

$$
\begin{aligned}
& \max c^{T} x \\
& {\left[\begin{array}{r}
A \\
-A
\end{array}\right] x } \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right] \\
& x \geq 0
\end{aligned}
$$

Dual of Problems in "Equality" Form

Consider:

$$
\begin{aligned}
\max c^{T} x & \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Rewrite equality constraints as pairs of inequalities:

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
-A x & \leq-b \\
x & \geq 0
\end{aligned}
$$

Put into block-matrix form:

$$
\begin{aligned}
& \max c^{T} x \\
& {\left[\begin{array}{r}
A \\
-A
\end{array}\right] x } \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right] \\
& x \geq 0
\end{aligned}
$$

Dual is:

$$
\begin{aligned}
& \min \left[\begin{array}{r}
b \\
-b
\end{array}\right]^{T}\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \\
& {\left[A^{T}-A^{T}\right]\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c} \\
& y^{+}, y^{-} \geq 0
\end{aligned}
$$

Which is equivalent to:

$$
\begin{aligned}
\min b^{T}\left(y^{+}-y^{-}\right) & \\
A^{T}\left(y^{+}-y^{-}\right) & \geq c \\
y^{+}, y^{-} & \geq 0
\end{aligned}
$$

Finally, letting $y=y^{+}-y^{-}$, we get

$$
\begin{aligned}
& \min b^{T} y \\
& A^{T} y \geq c \\
& y \text { free. }
\end{aligned}
$$

- Equality constraints \Longrightarrow free variables in dual.
- Inequality constraints \Longrightarrow nonnegative variables in dual.

Corollary:

- Free variables \Longrightarrow equality constraints in dual.
- Nonnegative variables \Longrightarrow inequality constraints in dual.

