Princeton University
Department of Operations Research and Financial Engineering

ORF 307

Optimization

Practice Midterm 1

Closed book. No computers. Calculators allowed (but not needed).
You are permitted to use a one-page two-sided cheat sheet.
Please return the exam questions and your cheat sheet with your exam booklet.
(1) (30 pts.) Consider the following problem:

$$
\begin{array}{lrlllll}
\operatorname{maximize} & 2 x_{1} & - & x_{2} & -6 x_{3}+x_{4} & \\
\text { subject to } & x_{1} & & & & \\
& & -x_{2} & & +x_{4} & \leq & 5 \\
& -x_{1} & & -x_{3}+x_{4} & \leq & -1 \\
& & & x_{1}, x_{2}, x_{3}, x_{4} & \geq & 0 .
\end{array}
$$

(a) Write the problem in dictionary form.
(b) Write down the values of all variables associated with this dictionary.
(c) Write down the dual problem as a minimization problem.
(d) Write the dual problem in dictionary form.
(e) Write down the values of all variables associated with this dual dictionary. uses from (e).

1. (a)

$$
\begin{aligned}
& 5=2 x_{1}-x_{2}-6 x_{3}+x_{4} \\
& w_{1}=4-x_{1} \\
& w_{2}=5+x_{2}-x_{4} \\
& w_{3}=-1+x_{1}+x_{3}-x_{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{4}=0 \\
& w_{1}=4 \\
& w_{2}=5 \\
& w_{3}=-1
\end{aligned}
$$

(c) minimize $4 y_{1}+5 y_{2}-y_{3}$

$$
\begin{aligned}
y_{1}-y_{3} & \geqslant 2 \\
-y_{2} & \geqslant-1 \\
-y_{3} & \geqslant-6 \\
y_{2}+y_{3} & \geqslant 1 \\
y_{1}, y_{2}, y_{3} & \geqslant 0
\end{aligned}
$$

(d)

$$
\begin{array}{ll}
-\xi= & -4 y_{1}-5 y_{2}+y_{3} \\
z_{1}=-2+y_{1}-y_{3} \\
z_{2}=1 & -y_{2} \\
z_{3}=6 & -y_{3} \\
z_{4}=-1 & +y_{2}+y_{3}
\end{array}
$$

(e) $y_{1}=y_{2}=y_{3}=0, \quad z_{1}=-2, z_{2}=1, z_{3}=6, z_{4}=-1$
(f)

$$
\begin{array}{ll}
x_{1} z_{1}=0 \cdot(-2)=0, & x_{2} z_{2}=0(1)=0, \\
w_{1} y_{1}=4 \cdot 0=0, & x_{3} z_{3}=0 \cdot 6=0, \quad x_{11} z_{4}=0(-1)=0 \\
y_{2}=5 \cdot 0=0, & w_{3} y_{3}=-1 \cdot 0=0 \quad \text { YES! }
\end{array}
$$

(2) (14 pts.) Consider the following four dictionaries:
(a) $\frac{\zeta=-2-2 x_{1}-3 w_{1}-w_{2}}{x_{2}=2+3 w_{1}-w_{2}}$
(b) $\frac{\zeta=3+w_{1}+2 x_{2}-2 w_{2}-x_{3}}{x_{1}=4}+6 x_{2}+w_{2}-3 x_{3}$ $x_{3}=5+2 x_{1} \quad-w_{2}$ $x_{4}=3-4 w_{1}$
$-x_{3}$
(c)

ζ	$=-9$
$x_{3}=-2-2 x_{2}-w_{3}-x_{2}$	
w_{1}	$=-1+w_{2}+5 w_{3}+x_{2}$
$x_{1}=3-w_{2}-3 w_{3}-x_{2}$	

(d)

ζ	$=6+2 x_{4}+x_{1}+2 w_{3}$
x_{3}	$=-1+2 x_{4}+w_{1}+3 x_{1}-7 w_{3}$
x_{2}	$=-2-x_{4}+5 w_{1}+x_{1}+w_{3}$
w_{2}	$=-x_{4}-3 w_{1}-2 x_{1}+w_{3}$

For each of the above dictionaries, identify which of the following statements are true by placing check marks in the following table:

Be sure to return this page with your exam booklet.
(3) (18 pts.) Mark the following statements as true (T) or false (F):

If the current dictionary is degenerate, then the next pivot will not change the ob- jective function.	F / F
Consider the version of the simplex method in which an artificial variable x_{0} is introduced in phase-I. The phase-I problem can be unbounded.	F
After a degenerate pivot, the dictionary must still be degenerate.	T
An optimal solution to a linear programming problem must be a vertex of the set of feasible solutions.	F
No problem with an unbounded feasible region has an optimal solution.	F
Consider a dictionary. The primal and dual solutions associated with this dictionary must satisfy the complementarity relations: $x_{j} z_{j}=0$ for all j and $w_{i} y_{i}=0$ for all i.	T
It is possible to move from one vertex of the feasible set to any other vertex in a	
single pivot.	F
A dual pivot never decreases the value of the primal objective function.	F
A problem has an optimal solution if and only if it is both primal and dual feasible.	T

NOTE: SAT-style grading scheme: 2 points for a correct answer, 0 points for an incorrect answer, and 1 point for no answer.
(4) (7 pts.) The CEO of a large corporation needs the solution to the following linear programming problem:

$$
\begin{array}{lrr}
\operatorname{maximize} & -2 x_{1}-2 x_{2}-6 x_{3} \\
\text { subject to } & x_{1}-2 x_{2}-2 x_{3} \leq-15 \\
& -2 x_{1}+x_{2}-x_{3} \leq-30 \\
& x_{1}, x_{2}, x_{3} \geq & 0 .
\end{array}
$$

Because the numbers represent millions of dollars, an error would be very costly. Hence, he's independently delegated the task of computing the solution to two subordinates: Alice and Brad. Alice came back with the following values for the primal and, by the way, for the associated dual values:

$$
x_{1}^{*}=25, x_{2}^{*}=20, x_{3}^{*}=0 \quad \text { and } \quad y_{1}^{*}=2, y_{2}^{*}=2
$$

Brad provided the following values, which are different from Alice's:

$$
x_{1}^{*}=9, x_{2}^{*}=0, x_{3}^{*}=12
$$

Since the two solutions disagree, you're being asked to determine who, if anyone, is correct. So, who is? Explain.

(5) (7 pts .) Given n girls and m boys, you, the matchmaker, are to determine how to pairwise match the girls with the boys so as to maximize some overall desirability index. This problem can be set up as follows. Let $x_{g b}$ be a decision variable that is 1 if girl g gets matched to boy b and is zero otherwise. Suppose that there is a desirability index $d_{g b}$ associated with matching girl g with boy b. The problem is to maximize the overall desirability of all of the matches subject to the constraints that each girl gets matched with one boy and each boy gets matched with at most one girl. Formulate this problem as a linear programming problem. Notes: (1) don't worry about specific data, just describe the problem; (2) you can write it either in AMPL or just in common mathematical notation; (3) don't worry that the solution might involve fractions.
See page after next.
4. Check Alice's solution...

Primal fear:

$$
\begin{aligned}
& x_{1}^{*}-2 x_{2}^{*}-2 x_{3}^{*}=25-40-0=-65 \leqslant-15 \\
& -2 x_{1}^{*}+x_{2}^{*}-x_{3}^{*}=-50+20-0=-30 \leq-30 \\
& x_{1}^{*}, x_{2}^{*}, x_{3}^{*} \geqslant 0 \quad \text { Yes! }
\end{aligned}
$$

Dual fees.:

$$
\begin{aligned}
& y_{1}^{*}-2 y_{2}^{*}=2-4=-2 \geqslant-2 \\
&-2 y_{1}^{*}+y_{2}^{*}=-4+2=-2 \geqslant-2 \\
&-2 y_{1}^{*}-y_{2}^{*}=-4-2=-6 \geqslant-6 \\
& y_{1}^{*}, y_{2}^{*}, y_{3}^{*} \geqslant 0 \quad \text { Yes! }
\end{aligned}
$$

Duality gas:

$$
\begin{aligned}
& -2 x_{1}^{*}-2 x_{2}^{*}-6 x_{3}^{*}=-50-40-0=-90 \\
& -15 y_{1}^{*}-30 y_{2}^{*}=-30-60=-90
\end{aligned}
$$

Alice is optrial!
Check Brads solution...
Obj. value: $-2 x_{1}^{*}-2 x_{2}^{*}-6 x_{3}^{*}=-18-72=-90$
Primal Fess: $\quad x_{1}^{*}-2 x_{2}^{*}-2 x_{3}^{*}=9-24=-15 \leqslant-15$

$$
-2 x_{1}^{*}+x_{2}^{*}-x_{3}^{*}=-18-12=-30 \leq-30
$$

Brad is also optimal!
5. $\max \sum_{g} \sum_{b} d_{g b} x_{g b}$
$\sum_{b} x_{g b}=1$ for every gil y
$\sum_{g} x_{g b} \leqslant 1$ for every boy b
$x_{g b} \geq 0$ for every pair (g, b)
(6) (8 pts.) The solution associated with the following dictionary is optimal:

$$
\begin{array}{ll}
\zeta=5 & -2 w_{2} \\
\hline x_{1}=6+5 w_{1}+w_{2} \\
x_{2}=0-w_{1}-7 w_{2}
\end{array}
$$

(a) Write down the optimal values for all of the variables in this problem.
(b) If there are other optimal solutions, find one. If there are none, say how you know this to be the case.

See next page

(7) (6 pts.) Consider the following linear programming problem in 2 variables:

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+2 x_{2} \\
\text { subject to } & -x_{1}+3 x_{2} \leq 12 \\
& x_{1}+x_{2} \leq 8 \\
& 2 x_{1}-x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Here is a graph of the feasible region shown together with two level sets of the objective function:

Using the primal simplex method, one can pivot from the vertex labeled A to the vertex labeled B. Consider this pivot.
(a) What is the entering variable? $\quad x_{2}$
(b) What is the leaving variable? $\quad W_{2}$ Explain.

$$
\begin{aligned}
& \text { The nonbasic variables at } A \text { are: } x_{2} \text { \& } w_{3} \\
& \text { The nonbasic variables at } B \text { are: } w_{2} \text { \& } w_{3}
\end{aligned}
$$

6. (a) $x_{1}=6, x_{2}=0 \quad\left(\right.$ and $\left.w_{1}=0, w_{2}=0\right)$.
(b) The optimal clictionary has a nonbasic variable with a sew coefficient: $O w_{1}$.
Il we pick w_{1} as an "entering" variable, phhaps we can do a non-degenerate piss to a different, still opterial, solution. Let'stry. Oh, oh. The dictionary is primal degenerate and the leaving variable is x_{2} resulting in a degenerate prot...

$$
\begin{array}{ll}
5=5+0 x_{2}-2 w_{2} \\
x_{1}=6-5 x_{2}-34 w_{2} \\
w_{1}=0-x_{2}-7 w_{2}
\end{array} \quad \Rightarrow \quad x_{1}=6, \quad x_{2}=0
$$

Can we contrive? Well, using the same idler, we could let x_{2} enter and w_{1} leave. But this brings us back to where we started. Hence, there is only one optimal solution.
(8) (5 pts.) Consider a problem whose constraints are as shown here:

Suppose that the objective is to minimize x_{1}. Clearly, the optimal solution is at vertex E . It is not possible for the dual simplex method starting at vertex H to visit vertices G then E? Explain why. The clual simplex method is use when a dictionary solution is primal infeasible. As soon as primal feasibility is
(9) (5 pts.) Using the largest coefficient rule to choose the entering variable in the attained, following primal feasible dictionary, compute the dictionary after one iteration of the simplex method.
\downarrow

$$
\begin{aligned}
& \text { hod. } \\
& \qquad \begin{array}{r}
\zeta \\
\frac{\downarrow}{w_{1}}=1+x_{1}+3 x_{2}-x_{3} \\
w_{2}=0 x_{2}-6 x_{3} \\
-x_{2}-2 x_{3}
\end{array} \\
& \zeta=0+x_{1}-3 w_{2}-7 x_{3} \\
& \begin{array}{l}
w_{1}
\end{array}=1+x_{1}+2 w_{2}-2 x_{3} \\
& x_{2}=0 \quad-w_{2}-2 x_{3}
\end{aligned}
$$

