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Brevity and clarity will be rewarded. Especially brevity.

In financial markets, an American option is a contract giving the holder of the option the right to
buy a particular stock at a particular price S, called the strike price, at any time in the future (in the
real-world, there is an expiration date; for simplicity we will assume that the right never expires).
Let Xn denote the share price of the stock at a time n days into the future. Obviously, Xn is a
random variable and the collection of these random variables over time is a stochastic process. Let
us assume that Xn is a random walk on the state space E = {j∆x : j = 0, 1, 2, . . .}, where ∆x
is a fixed small positive real number. That is, if the current stock price is x ∈ E, then the price
tomorrow will be either x+ ∆x or x−∆x with probabilities p and q = 1− p, respectively.

In order to figure out how to price the option, one must answer the question: what is the expected
value, in today’s dollars, of the option? Naturally, the seller of the option should assume that
the buyer will employ an optimal strategy for exercising the option. If at some future date, the
stock price Xn is larger than S, then the holder of the option can buy the stock for S dollars and
immediately sell it for Xn dollars and realize a gain of Xn − S dollars. If, on the other hand, the
price is less than S, then there is no value in exercising the option—the option holder would only
lose money needlessly. Hence, the value at time n of the option is

f(Xn) =

{
Xn − S if Xn ≥ S
0 if Xn ≤ S.

If the option holder exercises the option at some time τ (possibly random, but not clairvoyant),
then the expected present value would be

Exα
τf(Xτ ).

Here we have introduce a discount factor α (a number slightly less than one). This discount factor
accounts for the fact that future dollars are worth less than present dollars. Specifically, α gives the
today’s value of tomorrow’s dollar. The optimal strategy is then determined by maximizing over
all non-clairvoyant random times τ :

v(x) = max
τ

Exα
τf(Xτ ).

The function v is called the value function. It tells both the buyer and the seller of the option
everything they need to know. It tells the seller that the “fair” price for the option is v(x) if the



current stock price is x. It also characterizes the optimal strategy for the buyer of the option. The
buyer should not exercise the option at times n when v(Xn) > f(Xn). In fact, he/she should
exercise the option exactly at the first time that v(Xn) = f(Xn).

In a probability course, it is shown that v can be uniquely characterized as the smallest function
that satisfies these inequalities:

v(x) ≥ f(x), x ∈ E

v(x) ≥ α (pv(x+ ∆x) + qv(x−∆x)) , x ∈ E \ {0}.

Recalling the discreteness of our model’s state space, we can formulate an infinite dimensional
linear programming problem

minimize
∞∑
j=0

vj

subject to vj ≥ fj j = 0, 1, 2, . . .

vj ≥ α (pvj+1 + qvj−1) j = 1, 2, . . .

where xj = j∆x, vj = v(xj), and fj = f(xj).

Let v∗j , j = 0, 1, . . ., denote the optimal solution to this linear programming problem. From
the original real-world description of the problem, it would seem that the optimal strategy for
exercizing the option would be not to exercize when the stock price is below some threshold and
then exercise as soon as the stock price hits the threshold value. In other words, it would seem
that...

There exists a j∗ such that

v∗0 = f0,

v∗j = α(pv∗j+1 + qv∗j−1) > fj, 0 < j < j∗,

v∗j = fj > α(pv∗j+1 + qv∗j−1), j∗ ≤ j.

Prove this statement. If you need additional assumptions, state them clearly and discuss their
implication.
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FIGURE 1. Plot of v∗(x) and f(x) corresponding to the case where α = 0.999,
p = 0.51, ∆x = 0.1, and S = 9. In this case, xj∗ = 12.4.


