Optimization Qualifying Exam

Solution
September 2007

1. Primal Problem.

The primal problem is:

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{j=0}^{\infty} v_{j} & \\
\text { subject to } & v_{j} \geq f_{j}, & j \geq 0, \\
& v_{j} \geq \alpha\left(p v_{j+1}+q v_{j-1}\right), & j \geq 1 .
\end{array}
$$

2. Dual Problem.

The associated dual problem is

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=0}^{\infty} f_{j} y_{j} & \\
\text { subject to } & y_{0}-\alpha q z_{1}=1, & \\
& y_{1}+z_{1}-\alpha q z_{2}=1, & \\
& y_{j}-\alpha p z_{j-1}+z_{j}-\alpha q z_{j+1}=1, & j \geq 2, \\
y_{j} \geq 0, & j \geq 0, \\
z_{j} \geq 0, & j \geq 1 .
\end{array}
$$

3. Statement of Claim.

Let v_{j} denote the optimal primal solution and y_{j} and z_{j} the optimal dual solution (i.e., we are dropping the usual "stars" that denote optimality). Suppose, as claimed, that there exists a j^{*} such that

$$
\begin{array}{llll}
v_{0}=f_{0}, & & \\
v_{j}=\alpha\left(p v_{j+1}+q v_{j-1}\right) & >f_{j}, & & \text { for } 0<j<j^{*}, \\
v_{j} & =f_{j} & >\alpha\left(p v_{j+1}+q v_{j-1}\right), & \\
\text { for } j^{*} \leq j .
\end{array}
$$

4. Invoke Complementarity.

Complementarity implies that

$$
\begin{array}{ll}
z_{j}=0, & j \geq j^{*} \\
y_{j}=0, & 0<j<j^{*} \tag{2}
\end{array}
$$

Dual feasibility with (1) implies

$$
\begin{aligned}
y_{j^{*}}-\alpha p z_{j^{*}-1} & =1, \\
y_{j} & =1, \quad j>j^{*}
\end{aligned}
$$

Dual feasibility with (2) implies

$$
\begin{aligned}
z_{1}-\alpha q z_{2} & =1 \\
-\alpha p z_{j-1}+z_{j}-\alpha q z_{j+1} & =1, \quad 1<j<j^{*}
\end{aligned}
$$

5. Second Order Difference Equations.

Hence, the problem of solving the equalities has been reduced to a pair of second order difference equations with Dirichlet boundary conditions. The first difference equation is

$$
\begin{align*}
v_{j}-\alpha\left(p v_{j+1}+q v_{j-1}\right) & =0, \quad 0<j<j^{*}, \tag{3}\\
v_{0} & =0, \tag{4}\\
v_{j^{*}} & =f_{j^{*}} \tag{5}
\end{align*}
$$

and the second one is

$$
\begin{align*}
z_{j}-\alpha\left(p z_{j-1}+q z_{j+1}\right) & =1, \quad 0<j<j^{*} \tag{6}\\
z_{0} & =0 \tag{7}\\
z_{j^{*}} & =0 \tag{8}
\end{align*}
$$

Note that in (4) we used the fact that $f_{0}=0$ and in (6) we have added a new variable, z_{0}, which is just fixed to zero (by (7)). In this way we consolidate the difference equation for z_{j} to a more elegant form.

6. Explicit Solution of Difference EQuation for v_{j}.

First, we solve the equation for v_{j}. To this end, suppose that

$$
v_{j}=\xi^{j}
$$

for some positive real number ξ. Substituting into the difference equation, we get

$$
\xi^{j}-\alpha\left(p \xi^{j+1}+q \xi^{j-1}\right)=0 .
$$

Dividing by ξ^{j-1}, we get a quadratic equation

$$
-\alpha p \xi^{2}+\xi-\alpha q=0
$$

The two roots of this equation are

$$
\xi_{ \pm}=\frac{-1 \pm \sqrt{1-4 \alpha^{2} p q}}{-2 \alpha p}
$$

The general solution to the difference equation is therefore

$$
v_{j}=c_{+} \xi_{+}^{j}+c_{-} \xi_{-}^{j} .
$$

From the first boundary condition (4), we get that $c_{-}=-c_{+}$. This relation together with the second boundary condition (5) gives

$$
c_{+}=\frac{f_{j^{*}}}{\xi_{+}^{j^{*}}-\xi_{-}^{j^{*}}} .
$$

Hence,

$$
\begin{equation*}
v_{j}=f_{j^{*}} \frac{\xi_{+}^{j}-\xi_{-}^{j}}{\xi_{+}^{j^{*}}-\xi_{-}^{j^{*}}}, \quad 0<j<j^{*} \tag{9}
\end{equation*}
$$

7. Explicit Solution of Difference EQuation for z_{j}.

Now, let's solve for z_{j}. We need a particular solution to the equation and the general solution to the associated homogeneous equation. For a particular solution, we try the simplest thing

$$
z_{j} \equiv c
$$

Substituting into the difference equation, we discover that $c=1 /(1-\alpha)$. The associated homogeneous equation is exactly the same as the equation for v_{j} except with p and q interchanged. Hence the general solution, which is the sum of the particular and the homogeneous, is given by

$$
z_{j}=\frac{1}{1-\alpha}+c_{+} \zeta_{+}^{j}+c_{-} \zeta_{-}^{j}
$$

where

$$
\begin{aligned}
& \zeta_{+}=1 / \xi_{-}=\frac{-1+\sqrt{1-4 \alpha^{2} p q}}{-2 \alpha q} \\
& \zeta_{-}=1 / \xi_{+}=\frac{-1-\sqrt{1-4 \alpha^{2} p q}}{-2 \alpha q}
\end{aligned}
$$

Using the boundary conditions to eliminate the two undetermined constants, we get

$$
z_{j}=\left(1-\frac{\zeta_{-}^{j^{*}}-1}{\zeta_{-}^{j^{*}}-\zeta_{+}^{j^{*}}} \zeta_{+}^{j}-\frac{\zeta_{+}^{j^{*}}-1}{\zeta_{+}^{j^{*}}-\zeta_{-}^{j^{*}}} \alpha_{-}^{j}\right) /(1-\alpha), \quad 0<j<j^{*}
$$

8. Solution to EQUALIties.

To summarize, we have

$$
\begin{aligned}
& v_{j}= \begin{cases}0 & j=0 \\
f_{j^{*}} \frac{\xi_{+}^{j}-\xi_{-}^{j}}{\xi_{+}^{j^{*}}-\xi_{-}^{j^{*}}}, & 0<j<j^{*} \\
f_{j} & j^{*} \leq j\end{cases} \\
& z_{j}= \begin{cases}\left(1-\frac{\zeta_{j^{*}}-1}{\zeta_{-}^{j^{*}}-\zeta_{+}^{j^{*}}} \zeta_{+}^{j}-\frac{\zeta_{+}^{j^{*}}-1}{\zeta_{+}^{j^{*}}-\zeta_{-}^{j^{*}}} \zeta_{-}^{j}\right) /(1-\alpha) & 0<j<j^{*} \\
0 & j^{*} \leq j\end{cases} \\
& y_{j}= \begin{cases}1+\alpha q z_{1} & j=0 \\
0 & 0<j<j^{*} \\
1+\alpha p z_{j^{*}-1} & j=j^{*} \\
1 & j^{*}<j\end{cases}
\end{aligned}
$$

9. Check the Inequalities.

All that remains is to show that the various inequalities are satisfied:

$$
\begin{array}{rlrl}
y_{j} & \geq 0, & j \geq 0, & \\
z_{j} & \geq 0, & j \geq 1, & \\
v_{j} & \geq f_{j}, & j \geq 0, & \\
v_{j} & \geq \alpha\left(p v_{j+1}+q v_{j-1}\right), & j \geq 1 \tag{13}
\end{array}
$$

9.1. Inequalities (11). Inequalities (11) follow trivially for $j \geq j^{*}$ from the formula given above for z_{j}. To check them for $j<j^{*}$, we do a proof by contradiction. So, suppose that $z_{j}<0$ for some $0<j<j^{*}$. Then there exists a k at which z_{k} is negative and a local minimum:

$$
z_{k}<z_{k-1} \quad \text { and } \quad z_{k}<z_{k+1}
$$

But, we also have

$$
\begin{aligned}
z_{k} & =1+\alpha\left(p z_{k-1}+q z_{k+1}\right) \\
& >1+\alpha\left(p z_{k}+q z_{k}\right) \\
& =1+\alpha z_{k} .
\end{aligned}
$$

Rearranging, we get $z_{k}>1 /(1-\alpha)>0$, which contradicts the assumption that z_{k} is negative. Hence, inequalities (11) hold for all j. (This is a simple example of a minimum principle as one encounters in harmonic analysis.)
9.2. Inequalities (10). These follow trivially from inequalities (11) and the formula for y_{j}.
9.3. Inequalities (13). These hold trivially for $j<j^{*}$. They also hold trivially for $j>j^{*}$ provided we assume that $\alpha p \leq 1 / 2$ and $\alpha q \leq 1 / 2$. We'll come back to the inequality (13) for $j=j^{*}$ after we consider inequalities (12).
9.4. Inequalities (12). For $j \geq j^{*}$, these are trivial. Furthermore, it follows immediately from (9) that $v_{j} \geq 0$ for all j. Hence, we just need to check that $v_{j} \geq x_{j}-S$ for $j<j^{*}$. In order to have these inequalities hold for $j<j^{*}$, we need to pick

$$
j^{*} \in K:=\left\{k: f_{k} \frac{\xi_{+}^{k-1}-\xi_{-}^{k-1}}{\xi_{+}^{k}-\xi_{-}^{k}}>f_{k-1}\right\} .
$$

Of course, we need to assume that K is nonempty. Clearly no k for which $x_{k}<S$ can belong to the set (because both f_{k} and f_{k-1} vanish). For convenience, then, we assume that $S \in E$-that is, $S=j_{S} \Delta x$ for some j_{S}. In that case, we assume that $k=j_{S}+1$ belongs to the set:

$$
f_{j_{S}+1} \frac{\xi_{+}^{j_{S}}-\xi_{-}^{j_{S}}}{\xi_{+}^{j_{S}+1}-\xi_{-}^{j_{S}+1}}>f_{j_{S}}
$$

Let $h_{j}=x_{j}-S$. With such a choice and the assumption that $j^{*} \in K$, we have that $v_{j^{*}}=h_{j^{*}}$ and $v_{j^{*}-1}>h_{j^{*}-1}$. Suppose that $v_{j^{\prime}}<h_{j^{\prime}}$ for some $j^{\prime}<j^{*}$. Then the sequence $u_{j}:=v_{j}-h_{j}$ must have a local maximum at some point, say k, strictly between j^{\prime} and j^{*}. That is, $u_{k}>u_{k-1}$ and $u_{k}>u_{k+1}$. But, we also have

$$
\begin{aligned}
u_{k} & =v_{k}-h_{k} \\
& =\alpha\left(p v_{k+1}+q v_{k-1}\right)-\frac{1}{2}\left(h_{k+1}+h_{k-1}\right) \\
& \leq \frac{1}{2}\left(v_{k+1}+v_{k-1}\right)-\frac{1}{2}\left(h_{k+1}+h_{k-1}\right) \\
& =\frac{1}{2}\left(u_{k+1}+u_{k-1}\right) \\
& <u_{k} .
\end{aligned}
$$

Clearly this is impossible. Hence, u_{j} can't have a local maximum and therefore v_{j} cannot dip below h_{j}.
9.5. Inequality (13) with $j=j^{*}$. Finally, to get inequality (13) for $j=j^{*}$, we need to assume that $j^{*}+1 \notin K$. That is,

$$
\begin{equation*}
f_{j^{*}+1} \frac{\xi_{+}^{j^{*}}-\xi_{-}^{j^{*}}}{\xi_{+}^{j^{*}+1}-\xi_{-}^{j^{*}+1}} \leq f_{j^{*}} \tag{14}
\end{equation*}
$$

To see why, let w_{j} denote the solution to the difference equation

$$
\begin{aligned}
w_{j}-\alpha\left(p w_{j+1}+q w_{j-1}\right) & =0, \quad 0<j, \\
w_{0} & =0 \\
w_{j^{*}} & =f_{j^{*}}
\end{aligned}
$$

This is the same as (6)-(8) but extended to all j. Clearly we have $v_{j^{*}}=w_{j^{*}}$ and $v_{j^{*}-1}=w_{j^{*}-1}$. Hence, (13) at j^{*} will hold if and only if $v_{j^{*}+1} \leq w_{j^{*}+1}$:

$$
f_{j^{*}+1}=v_{j^{*}+1} \leq w_{j^{*}+1}=f_{j^{*}} \frac{\xi_{+}^{j^{*}+1}-\xi_{-}^{j^{*}+1}}{\xi_{+}^{j^{*}}-\xi_{-}^{j^{*}}}
$$

The resulting inequality is clearly equivalent to (14).

10. SUMMARY

The claimed result holds provided we make the extra assumptions that
(1) $\alpha p \leq 1 / 2$ and $\alpha q \leq 1 / 2$,
(2) $S=j_{S} \Delta x$ for some integer j_{S}, and
(3) $f_{j_{S}+1}\left(\xi_{+}^{j_{S}}-\xi_{-}^{j_{S}}\right) /\left(\xi_{+}^{j_{S}+1}-\xi_{-}^{j_{S}+1}\right)>f_{j_{S}}$.

With these assumptions, j^{*} must be chosen as

$$
j^{*}:=\max \left\{k: f_{k} \frac{\xi_{+}^{k-1}-\xi_{-}^{k-1}}{\xi_{+}^{k}-\xi_{-}^{k}}>f_{k-1}\right\}
$$

