
ORF 522: Lecture 12

Linear Programming: Chapter 14

Network Flows: Applications

Robert J. Vanderbei

October 23, 2012

Slides last edited at 9:48am on Tuesday 23rd October, 2012

Operations Research and Financial Engineering, Princeton University

http://www.princeton.edu/∼rvdb

http://www.princeton.edu/~rvdb


Transportation Problem

Each node is one of two types:

• source (supply) node

• destination (demand) node

Every arc has:

• its tail at a supply node

• its head at a demand node

Such a graph is called bipartite.



Solving with Pivot Tool

Best to arrange:

• supply nodes vertically on
left

• demand nodes horizontally
across top

Note that arc data appears as a
neat table.

Data:



Tree Solution

Leaving arc: (a,b)
Entering arc: (i,h)
Etc., etc., etc.



Assignment Problem

Transportation problem in which

• There are an equal number of supply and demand nodes.

• Every supply node has a supply of one.

• Every demand node has a demand for one.

• Each supply node is connected to every demand node (called a complete bipartite graph).

• Solution is required to be all integers.

Notes:

• These problems are very common.

• They are notoriously degenerate (2n constraints but only n nonzero flows).



Shortest Paths Problem

Given:

• Network: (N ,A)
• Costs = Travel Times: cij,
(i, j) ∈ A
• Home (root): r ∈ N

Problem: Find shortest path
from every node in N to root.



Network Flow Formulation

• Put

bi =

{
1 i 6= r
−(m− 1) i = r

• Solve min-cost network flow problem.

• Shortest path from i to r: follow tree arcs.

• Length (of time) of shortest path = y∗r − y∗i .

Notation Used in Following Algorithms

• Put vi = min. time from i to r

– Called label in networks literature.

– Called value in dynamic programming literature.



Label Correcting Algorithm
Dynamic Programming

• Bellman’s Equation = Principle of Dynamic Programming

vr = 0 (1)

vi = min{cij + vj : (i, j) ∈ A} (2)

T = {(i, j) ∈ A : vi = cij + vj} – not necessarily a tree (3)

• Method of Successive Approximation

– Initialize: v(0)i =

{
0 i = r
∞ i 6= r

– Iterate: v(k+1)
i =

{
0 i = r

min{cij + v
(k)
j : (i, j) ∈ A} i 6= r

– Stop: when a pass leaves vi’s unchanged.



Label Correcting Algorithm—Complexity

• v(k)i = length of shortest path having k or fewer arcs.

• Requires at most m− 1 passes.

• n adds/compares per pass.

• mn operations in total.



Label Setting Algorithm
Dijkstra’s Algorithm

Notations:

• F = set of finished nodes (labels are set).

• hi, i ∈ N = next node to visit after i (heading).

Dijkstra’s Algorithm:

• Initialize:

F = ∅, vj =

{
0 j = r
∞ j 6= r

• Iterate:

– While unfinished nodes remain, select the one with smallest vk. Call it j. Add it to
set of finished nodes F .

– For each unfinished node i having an arc connecting it to j:

∗ If cij + vj < vi, then set

vi = cij + vj (4)

hi = j (5)



Dijkstra’s Algorithm—Complexity

• Each iteration finishes one
node: m iterations

• Work per iteration:

– Selecting an unfinished
node:

∗ Naively, m compar-
isons.
∗ Using appropriate

data structures, a
heap, logm compar-
isons.

– Update adjacent arcs.

• Overall: m logm + n.


