ORF 522: Lecture 12

Linear Programming: Chapter 14
 Network Flows: Applications

Robert J. Vanderbei

October 23, 2012

Slides last edited at 9:48am on Tuesday $23^{\text {rd }}$ October, 2012

Operations Research and Financial Engineering, Princeton University
http://www.princeton.edu/~rvdb

Transportation Problem

Each node is one of two types:

- source (supply) node
- destination (demand) node Every arc has:
- its tail at a supply node
- its head at a demand node

Such a graph is called bipartite.

Solving with Pivot Tool

Data:

Best to arrange:

- supply nodes vertically on left
- demand nodes horizontally across top
Note that arc data appears as a neat table.

Tree Solution

Leaving arc: (a, b)
Entering arc: (i, h)
Etc., etc., etc.

Assignment Problem

Transportation problem in which

- There are an equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2 n$ constraints but only n nonzero flows).

Shortest Paths Problem

Given:

- Network: $(\mathcal{N}, \mathcal{A})$
- Costs $=$ Travel Times: $c_{i j}$, $(i, j) \in \mathcal{A}$
- Home (root): $r \in \mathcal{N}$

Problem: Find shortest path from every node in \mathcal{N} to root.

Network Flow Formulation

- Put

$$
b_{i}= \begin{cases}1 & i \neq r \\ -(m-1) & i=r\end{cases}
$$

- Solve min-cost network flow problem.
- Shortest path from i to r : follow tree arcs.
- Length (of time) of shortest path $=y_{r}^{*}-y_{i}^{*}$.

Notation Used in Following Algorithms

- Put $v_{i}=\min$. time from i to r
- Called label in networks literature.
- Called value in dynamic programming literature.

Label Correcting Algorithm

Dynamic Programming

- Bellman's Equation $=$ Principle of Dynamic Programming

$$
\begin{align*}
v_{r} & =0 \tag{1}\\
v_{i} & =\min \left\{c_{i j}+v_{j}:(i, j) \in \mathcal{A}\right\} \tag{2}\\
T & =\left\{(i, j) \in \mathcal{A}: v_{i}=c_{i j}+v_{j}\right\} \quad \text { - not necessarily a tree } \tag{3}
\end{align*}
$$

- Method of Successive Approximation
- Initialize: $v_{i}^{(0)}= \begin{cases}0 & i=r \\ \infty & i \neq r\end{cases}$
- Iterate: $v_{i}^{(k+1)}= \begin{cases}0 & i=r \\ \min \left\{c_{i j}+v_{j}^{(k)}:(i, j) \in \mathcal{A}\right\} & i \neq r\end{cases}$
- Stop: when a pass leaves v_{i} 's unchanged.

Label Correcting Algorithm-Complexity

- $v_{i}^{(k)}=$ length of shortest path having k or fewer arcs.
- Requires at most $m-1$ passes.
- n adds/compares per pass.
- $m n$ operations in total.

Label Setting Algorithm

Dijkstra's Algorithm

Notations:

- $F=$ set of finished nodes (labels are set).
- $h_{i}, i \in \mathcal{N}=$ next node to visit after i (heading).

Dijkstra's Algorithm:

- Initialize:

$$
F=\emptyset, \quad v_{j}= \begin{cases}0 & j=r \\ \infty & j \neq r\end{cases}
$$

- Iterate:
- While unfinished nodes remain, select the one with smallest v_{k}. Call it j. Add it to set of finished nodes F.
- For each unfinished node i having an arc connecting it to j :
$*$ If $c_{i j}+v_{j}<v_{i}$, then set

$$
\begin{align*}
v_{i} & =c_{i j}+v_{j} \tag{4}\\
h_{i} & =j \tag{5}
\end{align*}
$$

Dijkstra's Algorithm-Complexity

- Each iteration finishes one node: m iterations
- Work per iteration:
- Selecting an unfinished node:
* Naively, m comparisons.
* Using appropriate data structures, a heap, $\log m$ comparisons.
- Update adjacent arcs.

- Overall: $m \log m+n$.

