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Interior-Point Methods—The Breakthrough

Breakthrough in Problem Solving 

"This is a path-breaking result:' said Dr. 
Ronald L. Graham, director of 
mathematical sciences for Bell Labs in 

By JAMES 
A?8-year-old mathematician at A.T.m. 

Bell Laboratories has made a startling 
theoretical breakthrough in the solving of 
systems of equations that often grow too 
vast and complex for the most powerful 
computers. 

The discovery, which is to be formally 
published next month, is already cir- 
culating rapidly through the mathematical 
world. It has also set off a deluge of 
inquiries from brokerage houses, oil com- 
panic$ and airlines, industries with millions 
of dollars at stake in problems known as 
linear programming. 

Faster Solutions Seen 

These problems are fiendishly com- 
plicated systems, often with thousands of 
variables. They arise in a variety of com- 
mid and government applications, rang- 
ing From allocating time on a communica- 
tions satellite to routing millions of 
telephone calls wer long distances, or 
whenever a limited, expensive resource 
must be spread most efficiently among 
wmpeting users. And investment com- 
panies use them in creating portfolios with 
the best mix of stocks and bonds. 

The Bell Labs mathematician. Dr. 
Narendra Karmarkar, has devised a 
radically new pmcedure that may speed the 
routine handling of such problems by 
businesses and Government agencies and 
also make it possible to tackle problems 
that are now far out of reach. 

Murray Hill, N.J. I 

GLEICK 
"Science has its moments of great pro- 
gress, and this may well be one of them." 

Because problems in linear program- 
ming can have billions or more possible 
answers, even high-speed computers can- 
not check every one. So computers must 
uqe a special procedure, an algorithm, to 
examine as fnv answers as possible before 
finding the best one - typically the one 
that minimizes cost or  maximizes 
efficiency. 

A pmcedm devised in 1947, the simplex 
method, is now used for such problems, 

Continued on Page A19, Column 1 
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Karmarlur a t  Ball Labs: an equation to find a new way through the maze 

Folding the Perfect Corner 
A young Bell scientist makes a major math breakthrough 

among the fllghC :total of 3 6 million gal should allow cdmputen to track sgrciter <om. 
of high-octane fuel 1s burned Nuts. bolts, bmation of tasks thm ever before and in a tnc. 

very day 1,200 Americen Airlines jets E cr~sscross . the U.S., Mexico. Canada and 
the Caribbean, stopping in 110 cities and bear- 
ing cwer 80,000 passengers. More than 4,000 
pilots, copilots, flight personnel, maintenance 
workers and baeeaee carriers are shuffled 

altimeters, landing gears and the like must be I tion of the time. 
checked at each destination. And while per- U n l ~ k e  most advances in theoretical 

Indian-born mathematician at Bell 
Laboratories in Murray Hill, N.J.. after only 
a years' work has cracked the puzzle of linear 
programming by devising a new algorithm, a 
step-by-step mathematical formula. He has 
translated the procedure into a proeranl that 

forming these scheduling gymna~tics. t h e  I mathematics. K a ~ a r k a r ' s  work w ~ l l  have an 
company must kccp a close q e  on costs. pro- ~mmcdiate and major impact on the ICA world. 
jected revenue and profits. 

Like American Airlines, thousands of com- 
panies must routinely untangle the myriad 
variables that complicate the efficient distribu- 
tion of their resources. Solving such monstrous 
problems requires the use of an abstruse 
branch of mathematics known as linear pro- 
gramming. It is the kind of math that has 
fmstratul theoreticians for years, and even the 
fastest and most powerful computers have had 
great difficulty juggling the bits and pieces of 
data. Now Narendra Karmarkar, a 28-year-old 

! "Breakthrough is o n e o f  the most abused 
words in science:' says Ronald Graham, d i m -  
tor of mathematical sciences at Bell Labs. 
"But this is one situation where it is truly ap- 
propriate." 

8 Before the Kamarkar method. linear equa- 
1 tions could be solved only in a cumbersome 

fashion, ironically known as the simplex 
method, devised by Mathematician George 
Dantzig in 1947. Problems are conceived of 
as giant geodesic domes with thousands of 
sides. Each comer of a facet on the dome 

TIME MAGAZINE, December 3, 1984 
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AT&T Patents the Algorithm, Announces KORBX



What Makes LP Hard?

Primal

maximize cTx
subject to Ax + w= b

x, w≥ 0

Dual

minimize bTy
subject to ATy − z = c

y, z≥ 0

Complementarity Conditions

xjzj = 0 j = 1, 2, . . . , n

wiyi = 0 i = 1, 2, . . . ,m



Matrix Notation

Can’t write xz = 0. The product xz is undefined.

Instead, introduce a new notation:

x =


x1

x2
...
xn

 =⇒ X =


x1

x2
. . .

xn



Then the complementarity conditions can be written as:

XZe = 0

WY e = 0



Optimality Conditions

Ax + w = b

ATy − z = c

ZXe = 0

WY e = 0

w, x, y, z ≥ 0

Ignore (temporarily) the nonnegativities.

2n + 2m equations in 2n + 2m unknowns.

Solve’em.

Hold on. Not all equations are linear.

It is the nonlinearity of the complementarity conditions that makes LP
fundamentally harder than solving systems of equations.



The Interior-Point Paradigm

Since we’re ignoring nonnegativities, it’s best to replace complementarity with µ-
complementarity:

Ax + w = b

ATy − z = c

ZXe = µe

WY e = µe

Start with an arbitrary (positive) initial guess: x, y, w, z.

Introduce step directions: ∆x, ∆y, ∆w, ∆z.

Write the above equations for x + ∆x, y + ∆y, w + ∆w, and z + ∆z:

A(x + ∆x) + (w + ∆w) = b

AT (y + ∆y)− (z + ∆z) = c

(Z + ∆Z)(X + ∆X)e = µe

(W + ∆W )(Y + ∆Y )e = µe



Paradigm Continued

Rearrange with “delta” variables on left and drop nonlinear terms on left:

A∆x + ∆w = b− Ax− w
AT∆y −∆z = c− ATy + z

Z∆x + X∆z = µe− ZXe
W∆y + Y∆w = µe−WY e

This is a linear system of 2m + 2n equations in 2m + 2n unknowns.

Solve’em.

Dampen the step lengths, if necessary, to maintain positivity.

Step to a new point:

x ←− x + θ∆x

y ←− y + θ∆y

w ←− w + θ∆w

z ←− z + θ∆z

(θ is the scalar damping factor).



Paradigm Continued

Pick a smaller value of µ for the next iteration.

Repeat from beginning until current solution satisfies, within a tolerance, optimality
conditions:

primal feasibility b− Ax− w = 0.

dual feasibility c− ATy + z = 0.

duality gap bTy − cTx = 0.

Theorem.

• Primal infeasibility gets smaller by a factor of 1− θ at every iteration.

• Dual infeasibility gets smaller by a factor of 1− θ at every iteration.

• If primal and dual are feasible, then duality gap decreases by a factor of 1 − θ at every
iteration (if µ = 0, slightly slower convergence if µ > 0).



loqo

Hard/impossible to “do” an interior-point method by hand.

Yet, easy to program on a computer (solving large systems of equations is routine).

LOQO implements an interior-point method.

Setting option loqo options ’verbose=2’ in AMPL produces the following
“typical” output:



loqo Output

variables: non-neg 1350, free 0, bdd 0, total 1350
constraints: eq 146, ineq 0, ranged 0, total 146

nonzeros: A 5288, Q 0

nonzeros: L 7953, arith_ops 101444

---------------------------------------------------------------------------

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -7.8000000e+03 1.55e+03 5.5076028e-01 4.02e+01

2 2.6725737e+05 7.84e+01 1.0917132e+00 1.65e+00

3 1.1880365e+05 3.92e+00 4.5697310e-01 2.02e-13 DF

4 6.7391043e+03 2.22e-01 7.2846138e-01 1.94e-13 DF

5 9.5202841e+02 3.12e-02 5.4810461e+00 1.13e-14 DF

6 2.1095320e+02 6.03e-03 2.7582307e+01 4.15e-15 DF

7 8.5669013e+01 1.36e-03 4.2343105e+01 2.48e-15 DF

8 5.8494756e+01 3.42e-04 4.6750024e+01 2.73e-15 1 DF

9 5.1228667e+01 8.85e-05 4.7875326e+01 2.59e-15 1 DF

10 4.9466277e+01 2.55e-05 4.8617380e+01 2.86e-15 2 DF

11 4.8792989e+01 1.45e-06 4.8736603e+01 2.71e-15 3 PF DF

12 4.8752154e+01 7.26e-08 4.8749328e+01 3.36e-15 4 PF DF

13 4.8750108e+01 3.63e-09 4.8749966e+01 3.61e-15 6 PF DF

14 4.8750005e+01 1.81e-10 4.8749998e+01 2.91e-15 7 PF DF

15 4.8750000e+01 9.07e-12 4.8750000e+01 3.21e-15 8 PF DF

----------------------

OPTIMAL SOLUTION FOUND



A Generalizable Framework

Start with an optimization
problem—in this case LP: maximize cTx

subject to Ax≤ b
x≥ 0

Use slack variables to make all
inequality constraints into non-
negativities:

maximize cTx
subject to Ax + w= b

x, w≥ 0

Replace nonnegativity constraints with logarithmic barrier terms in the objective:

maximize cTx + µ
∑

j log xj + µ
∑

i logwi

subject to Ax + w= b



Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x,w, y) = cTx + µ
∑
j

log xj + µ
∑
i

logwi + yT (b− Ax− w)

Set derivatives to zero:

c + µX−1e− ATy = 0 (deriv wrt x)

µW−1e− y = 0 (deriv wrt w)

b− Ax− w = 0 (deriv wrt y)

Introduce dual complementary variables:

z = µX−1e

Rewrite system:

c + z − ATy = 0

XZe = µe

WY e = µe

b− Ax− w = 0



Logarithmic Barrier Functions

Plots of µ log x for various values of µ:

x
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Lagrange Multipliers

maximize f (x)
subject to g(x) = 0

g=� 0
x* ∆f

�

maximize f (x)
subject to g1(x) = 0

g2(x) = 0

g1=0

x*

g2=0

∆g2

∆g1

∆f
�

∆f
�


