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ABSTRACT

• NASA/JPL plans to build and launch a space telescope to look for Earth-like planets.

• I will describe the detection problem and explain why it is hard.

• Optimization is key to several design concepts.



Are We Alone?



Wobble Methods

Radial Velocity.
For edge-on systems.
Measure periodic doppler
shift.

Astrometry.
Best for face-on systems.
Measure circular wobble
against background stars.
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The Transit Method

A few planets have been dis-
covered using the Transit
Method.

On June 6, 2012, Venus tran-
sited in front of the Sun.

I took a picture of this event
with my small telescope.

If we on Earth are lucky to be in the right position at the right time, we can detect similar
transits of exosolar planets.

A few exosolar planets have been discovered this way.



Terrestrial Planet Finder Telescope

• NASA/JPL space telescope.

• Launch date: 2014...well, sometime in our lifetime.

• DETECT: Search 150-500 nearby (5-15 pc distant) Sun-like stars for Earth-like planets.

• CHARACTERIZE: Determine basic physical properties and measure “biomarkers”, indi-
cators of life or conditions suitable to support it.



Why Is It Hard?

• Contrast. Star = 1010 × Planet

• Angular Separation. 0.1 arcseconds.

Planet



Early Design Concepts

Space-based infrared nulling interferometer
(TPF-I).

TPF-Interferometer

Visible-light telescope with an elliptical mir-
ror (3.5 m x 8 m) and an optimized
diffraction control system (TPF-C).

TPF-Coronagraph



Diffraction Control via Shaped Pupils

Consider a telescope. Light enters the
front of the telescope—the pupil plane.

The telescope focuses the light passing
through the pupil plane from a given direc-
tion at a certain point on the focal plane,
say (0, 0).

Focal 
plane

Light 
cone Pupil

plane

However, a point source produces not a point image but an Airy pattern consisting of an
Airy disk surrounded by a system of diffraction rings.

These diffraction rings are too bright. The rings would completely hide the planet.

By placing a mask over the pupil, one can control the shape and strength of the diffraction
rings. The problem is to find an optimal shape so as to put a very deep null very close to
the Airy disk.
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The Airy Pattern

Pupil Mask
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Spiders are an Example of a Shaped Pupil
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Note the six bright radial spikes

Image of Vega taken with my “big” 250mm telescope.



The Seven Sisters with Spikes

Pleiades image taken with small refractor equipped with dental floss spiders.



The Spergel-Kasdin-Vanderbei Pupil

Pupil Mask
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High-Contrast Imaging for Planet-Finding

Build a telescope capable of finding Earth-like planets around nearby Sun-like stars.

Problem is hard:

• Star is 1010 times brighter than the planet.

• Angular separation is small ≈ 0.1 arcseconds.

• Light is a wave: the star is not a pinpoint of
light—it has a diffraction pattern.

• Light is photons ⇒ Poisson statistics.

The diffraction pattern is the magnitude-squared of the Fourier transform of the telescope’s
pupil.



Pupil Apodization

Let f (x, y) denote the transmissivity (i.e., apodization) at location (x, y) on the surface of
a filter placed in the pupil of a telescope.

The electromagnetic field in the image plane of such a telescope associated with an on-axis
point source (i.e., a star) is proportional to the Fourier transform of the apodization f .

Assuming that the telescope’s opening has a radius of one, the Fourier transform can be
written as

f̂ (ξ, η) =

∫∫
�

e2πi(xξ+yη)f (x, y)dxdy.

The intensity of the light in the image is proportional to the magnitude squared of f̂ .

Assuming that the underlying telescope has a circular opening of radius one, we impose the
following constraint on f :

f (x, y) = 0 for x2 + y2 > 1.



Optimized Apodizations

Maximize light throughput subject to constraint that almost no light reaches a given dark
zone D and other structural constraints:

maximize

∫∫
�

f (x, y)dxdy
(

= f̂ (0, 0)
)

subject to
∣∣∣f̂ (ξ, η)

∣∣∣≤ ε f̂ (0, 0), (ξ, η) ∈ D,
f (x, y) = 0, x2 + y2 > 1,

0 ≤ f (x, y) ≤ 1, for all x, y.

Here, ε is a small positive constant (on the order of 10−5).

In general, the Fourier transform f̂ is complex valued.

This optimization problem has a linear objective function and both linear constraints and
second-order cone constraints.

Hence, a discretized version can be solved (to a global optimum).



Exploiting Symmetry

Assuming that the filter can be symmetric with respect to reflection about both axes (note:
sometimes not possible), the Fourier transform can be written as

f̂ (ξ, η) = 4

∫ 1

0

∫ 1

0

cos(2πxξ) cos(2πyη)f (x, y)dxdy.

In this case, the Fourier transform is real and so the second-order cone constraints can be
replaced with a pair of inequalities,

−ε f̂ (0, 0) ≤ f̂ (ξ, η) ≤ ε f̂ (0, 0),

making the problem an infinite dimensional linear programming problem.

Curse of Dimensionality: 2 > 1.



Potpourri of Pupil Masks
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PSF for Single Prolate Spheroidal Pupil

Fig. 5.— Left The single prolate spheroidal wave function shaped pupil aperture (Slepian

1965) inscribed in a circular aperture of unit area. Right The corresponding PSF plotted on

a logarithmic scale with black areas 10−10 below brightest. This mask has a single-exposure

normalized discovery integration time of 4.6 with a small discovery space at the inner working

distance (IWD).Clipboard
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Discretization

Consider a two-dimensional Fourier transform

f̂ (ξ, η) = 4

∫ 1

0

∫ 1

0

cos(2πxξ) cos(2πyη)f (x, y)dxdy.

Its discrete approximation can be computed as

f̂j1,j2 = 4
n∑

k2=1

n∑
k1=1

cos(2πxk1ξj1) cos(2πyk2ηj2)fk1,k2∆x∆y, 1 ≤ j1, j2 ≤ m,

where [
xk
yk

]
= (k − 1/2)

[
∆x
∆y

]
, 1 ≤ k ≤ n,[

ξj
ηj

]
= (j − 1/2)

[
∆ξ
∆η

]
, 1 ≤ j ≤ m,

fk1,k2 = f (xk1, yk2), 1 ≤ k1, k2 ≤ n,

f̂j1,j2 ≈ f̂ (ξj1, ηj2), 1 ≤ j1, j2 ≤ m.

Complexity: m2n2.



A Clever (and Trivial!) Idea

The obvious brute force calculation requires m2n2 operations.

However, we can “factor” the double sum into a nested pair of sums.

Introducing new variables that represent the inner sum, we get:

gj1,k2 = 2
n∑

k1=1

cos(2πxk1ξj1)fk1,k2∆x, 1 ≤ j1 ≤ m, 1 ≤ k2 ≤ n,

f̂j1,j2 = 2
n∑

k2=1

cos(2πyk2ηj2)gj1,k2∆y, 1 ≤ j1, j2 ≤ m,

Formulated this way, the calculation requires only mn2 + m2n operations.



Brute Force vs Clever Approach

On the following page we show two ampl model formulations of this problem.

On the left is the version expressed in the straightforward one-step manner.

On the right is the ampl model for the same problem but with the Fourier transform
expressed as a pair of transforms—the so-called two-step process.

The dark zone D is a pair of sectors of an annulus with inner radius 4 and outer radius 20.

Except for the resolution, the two models produce the same result.





Optimal Solution
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Left. The optimal apodization found by either of the models shown on previous slide.

Center. Plot of the star’s image (using a linear stretch).

Right. Logarithmic plot of the star’s image (black = 10−10).

Notes:

• The “apodization” turns out to be purely opaque and transparent (i.e., a mask).

• The mask has “islands” and therefore must be laid on glass.



Close Up

Brute force with n = 150
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Two-step with n = 1000
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Summary Problem Stats

Comparison between a few sizes of the one-step and two-step models.

Problem-specific stats.

Model n m constraints variables nonzeros arith. ops.
One step 150 35 976 17,672 17,247,872 17,196,541,336
One step 250 35 * * * *
Two step 150 35 7,672 24,368 839,240 3,972,909,664
Two step 500 35 20,272 215,660 7,738,352 11,854,305,444
Two step 1000 35 38,272 822,715 29,610,332 23,532,807,719

Hardware/Solution-specific performance comparison data.

Model n m iterations primal objective dual objective cpu time (sec)
One step 150 35 54 0.05374227247 0.05374228041 1380
One step 250 35 * * * *
Two step 150 35 185 0.05374233071 0.05374236091 1064
Two step 500 35 187 0.05395622255 0.05395623990 4922
Two step 1000 35 444 0.05394366337 0.05394369256 26060



JWST



Repurposed NRO Spy Satellite
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