ORF 522: Lecture 18

Nonlinear Optimization: Algorithms and Models

Robert J. Vanderbei

November 29, 2012

Slides last edited at 3:02pm on Thursday 29th November, 2012

Outline

- Algorithm
 - Basic Paradigm
 - Step-Length Control
 - Diagonal Perturbation
- Convex Problems
 - Minimal Surfaces
 - Digital Audio Filters
- Nonconvex Problems
 - Celestial Mechanics
 - Putting on an Uneven Green
 - Goddard Rocket Problem

The Interior-Point Algorithm

Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize
$$f(x)$$

subject to
$$h_i(x) \geq 0, \qquad i = 1, \dots, m$$

• Introduce slack variables to make all inequality constraints into nonnegativities:

minimize
$$f(x)$$

Associated Log-Barrier Problem

• Replace nonnegativity constraints with *logarithmic barrier terms* in the objective:

minimize
$$f(x) - \mu \sum_{i=1}^{m} \log(w_i)$$
 subject to $h(x) - w = 0$

First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using *Lagrange multipliers*:

$$L(x, w, y) = f(x) - \mu \sum_{i=1}^{m} \log(w_i) - y^{T}(h(x) - w)$$

• Set all derivatives to zero:

$$\nabla f(x) - \nabla h(x)^T y = 0$$
$$-\mu W^{-1} e + y = 0$$
$$h(x) - w = 0$$

Symmetrize Complementarity Conditions

• Rewrite system:

$$\nabla f(x) - \nabla h(x)^T y = 0$$

$$WYe = \mu e$$

$$h(x) - w = 0$$

Apply Newton's Method

• Apply Newton's method to compute search directions, Δx , Δw , Δy :

$$\begin{bmatrix} H(x,y) & 0 & -A(x)^T \\ 0 & Y & W \\ A(x) & -I & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta w \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) + A(x)^T y \\ \mu e - WY e \\ -h(x) + w \end{bmatrix}.$$

Here,

$$H(x,y) = \nabla^2 f(x) - \sum_{i=1}^m y_i \nabla^2 h_i(x)$$

and

$$A(x) = \nabla h(x)$$

• Note: H(x,y) is positive semidefinite if f is convex, each h_i is concave, and each $y_i \ge 0$.

Reduced KKT System

ullet Use second equation to solve for Δw . Result is the *reduced KKT system*:

$$\begin{bmatrix} -H(x,y) & A^{T}(x) \\ A(x) & WY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \nabla f(x) - A^{T}(x)y \\ -h(x) + \mu Y^{-1}e \end{bmatrix}$$

• Iterate:

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} \Delta x^{(k)}$$

$$w^{(k+1)} = w^{(k)} + \alpha^{(k)} \Delta w^{(k)}$$

$$y^{(k+1)} = y^{(k)} + \alpha^{(k)} \Delta y^{(k)}$$

Convex vs. Nonconvex Optimization Probs

Nonlinear Programming (NLP) Problem:

minimize
$$f(x)$$
 subject to $h_i(x)=0, \qquad i\in\mathcal{E},$ $h_i(x)\geq 0, \qquad i\in\mathcal{I}.$

NLP is *convex* if

- h_i 's in equality constraints are affine;
- h_i 's in inequality constraints are concave;
- *f* is convex;

NLP is *smooth* if

• All are twice continuously differentiable.

Modifications for Convex Optimization

For convex *nonquadratic* optimization, it does not suffice to choose the steplength α simply to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

$$f(x) = (1 + x^2)^{1/2}.$$

• The iterates can be computed explicitly:

$$x^{(k+1)} = -(x^{(k)})^3$$

- Converges if and only if $|x| \leq 1$.
- Reason: away from 0, function is too linear.

Step-Length Control

A *filter-type* method is used to guide the choice of steplength α .

Define the dual normal matrix:

$$N(x, y, w) = H(x, y) + A^{T}(x)W^{-1}YA(x).$$

Theorem Suppose that N(x, y, w) is positive definite.

- 1. If current solution is primal infeasible, then $(\Delta x, \Delta w)$ is a descent direction for the infeasibility $\|h(x) w\|$.
- 2. If current solution is primal feasible, then $(\Delta x, \Delta w)$ is a descent direction for the barrier function.

Shorten α until $(\Delta x, \Delta w)$ is produces a decrease in either the infeasibility or the barrier function.

Nonconvex Optimization: Diagonal Perturbation

- ullet If H(x,y) is not positive semidefinite then N(x,y,w) might fail to be positive definite.
- In such a case, we lose the descent properties given in previous theorem.
- \bullet To regain those properties, we perturb the Hessian: $\tilde{H}(x,y) = H(x,y) + \lambda I.$
- ullet And compute search directions using \tilde{H} instead of H.

Notation: let \tilde{N} denote the dual normal matrix associated with \tilde{H} .

Theorem If \tilde{N} is positive definite, then $(\Delta x, \Delta w, \Delta y)$ is a descent direction for

- 1. the primal infeasibility, $\|h(x) w\|$ and
- 2. the noncomplementarity, w^Ty .

• Not necessarily a descent direction for dual infeasibility.

ullet A line search is performed to find a value of λ within a factor of 2 of the smallest permissible value.

Nonconvex Optimization: Jamming

Theorem If the problem is convex and and the current solution is not optimal and ..., then for any slack variable, say w_i , we have $w_i = 0$ implies $\Delta w_i \geq 0$.

- To paraphrase: for convex problems, as slack variables get small they tend to get large again. This is an antijamming theorem.
- An example of Wächter and Biegler shows that for nonconvex problems, jamming really can occur.
- Recent modification:
 - if a slack variable gets small and
 - its component of the step direction contributes to making a very short step,
 - then increase this slack variable to the average size of the variables the "mainstream" slack variables.
- This modification corrects all examples of jamming that we know about.

Modifications for General Problem Formulations

- Bounds, ranges, and free variables are all treated implicitly as described in *Linear Programming: Foundations and Extensions (LP:F&E)*.
- Net result is following reduced KKT system:

$$\begin{bmatrix} -(H(x,y) + D) & A^{T}(x) \\ A(x) & E \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \Phi_1 \\ \Phi_2 \end{bmatrix}$$

- ullet Here, D and E are positive definite diagonal matrices.
- ullet Note that D helps reduce frequency of diagonal perturbation.
- ullet Choice of barrier parameter μ and initial solution, if none is provided, is described in the book.
- Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.