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The Interior-Point Algorithm



Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize f (x)

subject to hi(x) ≥ 0, i = 1, . . . ,m

• Introduce slack variables to make all inequality constraints into nonnegativities:

minimize f (x)

subject to h(x)− w= 0,
w≥ 0



Associated Log-Barrier Problem

• Replace nonnegativity constraints with logarithmic barrier terms in the objective:

minimize f (x)− µ
m∑
i=1

log(wi)

subject to h(x)− w = 0



First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x,w, y) = f (x)− µ
m∑
i=1

log(wi)− yT (h(x)− w)

• Set all derivatives to zero:

∇f (x)−∇h(x)Ty = 0

−µW−1e + y = 0

h(x)− w = 0



Symmetrize Complementarity Conditions

• Rewrite system:

∇f (x)−∇h(x)Ty = 0

WY e = µe

h(x)− w = 0



Apply Newton’s Method

• Apply Newton’s method to compute search directions, ∆x, ∆w, ∆y:
H(x, y) 0 −A(x)T

0 Y W

A(x) −I 0




∆x

∆w

∆y

 =


−∇f (x) + A(x)Ty

µe−WY e

−h(x) + w

 .

Here,

H(x, y) = ∇2f (x)−
m∑
i=1

yi∇2hi(x)

and
A(x) = ∇h(x)

• Note: H(x, y) is positive semidefinite if f is convex, each hi is concave, and each yi ≥ 0.



Reduced KKT System

• Use second equation to solve for ∆w. Result is the reduced KKT system:[
−H(x, y) AT (x)

A(x) WY −1

] [
∆x

∆y

]
=

[
∇f (x)− AT (x)y

−h(x) + µY −1e

]

• Iterate:
x(k+1) = x(k) + α(k)∆x(k)

w(k+1) = w(k) + α(k)∆w(k)

y(k+1) = y(k) + α(k)∆y(k)



Convex vs. Nonconvex Optimization Probs

Nonlinear Programming (NLP) Problem:

minimize f (x)

subject to hi(x) = 0, i ∈ E ,
hi(x)≥ 0, i ∈ I.

NLP is convex if

• hi’s in equality constraints are affine;

• hi’s in inequality constraints are concave;

• f is convex;

NLP is smooth if

• All are twice continuously differentiable.



Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply
to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing
f (x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.



Step-Length Control

A filter-type method is used to guide the choice of steplength α.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W−1Y A(x).

Theorem Suppose that N(x, y, w) is positive definite.

1. If current solution is primal infeasible, then (∆x,∆w) is a descent direction for the
infeasibility ‖h(x)− w‖.

2. If current solution is primal feasible, then (∆x,∆w) is a descent direction for the barrier
function.

Shorten α until (∆x,∆w) is produces a decrease in either the infeasibility or the barrier
function.



Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem If Ñ is positive definite, then (∆x,∆w,∆y) is a descent direction for

1. the primal infeasibility, ‖h(x)− w‖ and

2. the noncomplementarity, wTy.



Notes:

• Not necessarily a descent direction for dual infeasibility.

• A line search is performed to find a value of λ within a factor of 2 of the smallest
permissible value.



Nonconvex Optimization: Jamming

Theorem If the problem is convex and and the current solution is not optimal and ..., then
for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large
again. This is an antijamming theorem.

• An example of Wächter and Biegler shows that for nonconvex problems, jamming really
can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the “mainstream”
slack variables.

• This modification corrects all examples of jamming that we know about.



Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear Pro-
gramming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system:[
−(H(x, y) + D) AT (x)

A(x) E

] [
∆x

∆y

]
=

[
Φ1

Φ2

]

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the
book.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.


