ORF 522: Lecture 19
 Nonlinear Optimization: Models

Robert J. Vanderbei

December 4, 2012

Slides last edited at 3:07pm on Thursday $29^{\text {th }}$ November, 2012

Operations Research and Financial Engineering, Princeton University
http://www.princeton.edu/~rvdb

Examples: Convex Optimization Models

Minimal Surfaces

- Given: a domain D in R^{2} and an embedding $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ of its boundary ∂D in R^{3};
- Find: an embedding of the entire domain into R^{3} that is consistent with the boundary embedding and has minimal surface area:

$$
\begin{aligned}
\text { minimize } & \iint_{D}\left\|\frac{\partial \mathbf{x}}{\partial s} \times \frac{\partial \mathbf{x}}{\partial t}\right\| d s d t \\
\text { subject to } & \mathbf{x}(s, t) \text { fixed for }(s, t) \in \partial D \\
& x_{1}(s, t) \text { fixed for }(s, t) \in D \\
& x_{2}(s, t) \text { fixed for }(s, t) \in D
\end{aligned}
$$

The specific problems coded below take D to be either a square or an annulus.

Specific Example

Scherk.mod with D discretized into a 64×64 grid gives the following results:

constraints	0
variables	3844
time (secs)	
\quad LOQO	5.1
LANCELOT	4.0
SNOPT	$*$

Finite Impulse Response (FIR) Filter Design

- Audio is stored digitally in a computer as a stream of short integers: $u_{k}, k \in \mathbb{Z}$.
- When the music is played, these integers are used to drive the displacement of the speaker from its resting position.
- For CD quality sound, 44100 short integers get played per second per channel.

0	-32768	8	-23681	16	12111
1	-32768	9	-18449	17	17311
2	-32768	10	-11025	18	21311
3	-30753	11	-6913	19	23055
4	-28865	12	-4337	20	23519
5	-29105	13	-1329	21	25247
6	-29201	14	1743	22	27535
7	-26513	15	6223	23	29471

FIR Filter Design-Continued

- A finite impulse response (FIR) filter takes as input a digital signal and convolves this signal with a finite set of fixed numbers h_{-n}, \ldots, h_{n} to produce a filtered output signal:

$$
y_{k}=\sum_{i=-n}^{n} h_{i} u_{k-i} .
$$

- Sparing the details, the output power at frequency ν is given by

$$
|H(\nu)|
$$

where

$$
H(\nu)=\sum_{k=-n}^{n} h_{k} e^{2 \pi i k \nu}
$$

- Similarly, the mean squared deviation from a flat frequency response over a frequency range, say $\mathcal{L} \subset[0,1]$, is given by

$$
\frac{1}{|\mathcal{L}|} \int_{\mathcal{L}}|H(\nu)-1|^{2} d \nu
$$

Filter Design: Woofer, Midrange, Tweeter

minimize $\quad \rho$

$$
\begin{aligned}
& \text { subject to } \quad \int_{0}^{1}\left(H_{w}(\nu)+H_{m}(\nu)+H_{t}(\nu)-1\right)^{2} d \nu \leq \epsilon \\
&\left(\frac{1}{|W|} \int_{W} H_{w}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho \quad W=[.2, .8] \\
&\left(\frac{1}{|M|} \int_{M} H_{m}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho \quad M=[.4, .6] \cup[.9, .1] \\
&\left(\frac{1}{|T|} \int_{T} H_{t}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho \quad T=[.7, .3]
\end{aligned}
$$

where

$$
H_{i}(\nu)=h_{i}(0)+2 \sum_{k=1}^{n-1} h_{i}(k) \cos (2 \pi k \nu), \quad i=W, M, T
$$

$h_{i}(k)=$ filter coefficients, i.e., decision variables

Specific Example

| filter length: $n=14$ | |
| ---: | ---: | :--- |
| integral discretization: N | $=1000$ |
| constraints | 4 |
| variables | 43 |
| time $($ secs $)$ | |
| LOQO | 79 |
| MINOS | 164 |
| LANCELOT | 3401 |
| SNOPT | 35 |

Ref: J.O. Coleman, U.S. Naval Research Laboratory,
CISS98 paper available:
Click here for demo

Examples: Nonconvex Optimization Models

Celestial Mechanics-Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.
- Minimize action:

$$
\int_{0}^{2 \pi}(K(t)-P(t)) d t
$$

- where $K(t)$ is kinetic energy,

$$
K(t)=\frac{1}{2} \sum_{i}\left(\dot{x}_{i}^{2}(t)+\dot{y}_{i}^{2}(t)\right),
$$

- and $P(t)$ is potential energy,

$$
P(t)=-\sum_{i<j} \frac{1}{\sqrt{\left(x_{i}(t)-x_{j}(t)\right)^{2}+\left(y_{i}(t)-y_{j}(t)\right)^{2}}} .
$$

- Subject to periodicity constraints:

$$
x_{i}(2 \pi)=x_{i}(0), \quad y_{i}(2 \pi)=y_{i}(0) .
$$

Specific Example

Orbits.mod with $n=3$ and $(0,2 \pi)$ discretized into a 160 pieces gives the following results:

constraints	0	
variables	960	
time (secs)		
LOQO	1.1	
LANCELOT	8.7	
SNOPT		(no change for last 80\% of iterations)

Putting on an Uneven Green

Given:

- $z(x, y)$ elevation of the green.
- Starting position of the ball $\left(x_{0}, y_{0}\right)$.
- Position of hole $\left(x_{f}, y_{f}\right)$.
- Coefficient of friction μ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

- $u(t)=(x(t), y(t), z(t))$-position as a function of time t.
- $v(t)=\left(v_{x}(t), v_{y}(t), v_{z}(t)\right)$-velocity.
- $a(t)=\left(a_{x}(t), a_{y}(t), a_{z}(t)\right)$-acceleration.
- T-time at which ball arrives at hole.

Putting-Two Approaches

- Problem can be formulated with two decision variables:

$$
v_{x}(0) \quad \text { and } \quad v_{y}(0)
$$

and two constraints:

$$
x(T)=x_{f} \quad \text { and } \quad y(T)=y_{f}
$$

In this case, $x(T), y(T)$, and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.
The modern trend is to follow the second approach.

Putting-Continued

Objective:

$$
\operatorname{minimize} v_{x}(T)^{2}+v_{y}(T)^{2}
$$

Constraints:

$$
\begin{aligned}
v & =\dot{u} \\
a & =\dot{v} \\
m a & =N+F-m g e_{z} \\
u(0) & =u_{0} \quad u(T)=u_{f}
\end{aligned}
$$

where

- m is the mass of the golf ball.
- g is the acceleration due to gravity.
- e_{z} is a unit vector in the positive z direction.
and ...

Putting-Continued

- $N=\left(N_{x}, N_{y}, N_{z}\right)$ is the normal force:

$$
\begin{aligned}
& N_{z}=m \frac{g-a_{x}(t) \frac{\partial z}{\partial x}-a_{y}(t) \frac{\partial z}{\partial y}+a_{z}(t)}{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} \\
& N_{x}=-\frac{\partial z}{\partial x} N_{z} \\
& N_{y}=-\frac{\partial z}{\partial y} N_{z} .
\end{aligned}
$$

- F is the force due to friction:

$$
F=-\mu\|N\| \frac{v}{\|v\|} .
$$

Putting-Specific Example

- Discretize continuous time into $n=200$ discrete time points.
- Use finite differences to approximate the derivatives.

constraints	597
variables	399
time (secs)	
LOQO	14.1
LANCELOT	>600.0
SNOPT	4.1

Goddard Rocket Problem

Objective:

$$
\text { maximize } h(T) \text {; }
$$

Constraints:

$$
\begin{aligned}
v & =\dot{h} \\
a & =\dot{v} \\
\theta & =-c \dot{m} \\
m a & =\left(\theta-\sigma v^{2} e^{-h / h_{0}}\right)-g m \\
0 & \leq \theta \leq \theta_{\max } \\
m & \geq m_{\min } \\
h(0) & =0 \quad v(0)=0 \quad m(0)=3
\end{aligned}
$$

where

- $\theta=$ Thrust, $m=$ mass
- $\theta_{\text {max }}, g, \sigma, c$, and h_{0} are given constants
- h, v, a, T_{h}, and m are functions of time $0 \leq t \leq T$.

Goddard Rocket Problem-Solution

