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Examples: Convex Optimization Models



Minimal Surfaces
• Given: a domain D in R2 and an embedding x = (x1, x2, x3) of its boundary ∂D in R3;

• Find: an embedding of the entire domain into R3 that is consistent with the boundary
embedding and has minimal surface area:

minimize

∫∫
D

∥∥∥∥∥∂x

∂s
× ∂x

∂t

∥∥∥∥∥ dsdt
subject to x(s, t) fixed for (s, t) ∈ ∂D

x1(s, t) fixed for (s, t) ∈ D
x2(s, t) fixed for (s, t) ∈ D

The specific problems coded below take D to be either a square or an annulus.
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Specific Example

Scherk.mod with D discretized into a 64× 64 grid gives the following results:

constraints 0
variables 3844
time (secs)

loqo 5.1
lancelot 4.0
snopt *



Finite Impulse Response (FIR) Filter Design

• Audio is stored digitally in a computer as a stream of short integers: uk, k ∈ Z.

• When the music is played, these integers are used to drive the displacement of the speaker
from its resting position.

• For CD quality sound, 44100 short integers get played per second per channel.

0 -32768
1 -32768
2 -32768
3 -30753
4 -28865
5 -29105
6 -29201
7 -26513

8 -23681
9 -18449

10 -11025
11 -6913
12 -4337
13 -1329
14 1743
15 6223

16 12111
17 17311
18 21311
19 23055
20 23519
21 25247
22 27535
23 29471



FIR Filter Design—Continued

• A finite impulse response (FIR) filter takes as input a digital signal and convolves this
signal with a finite set of fixed numbers h−n, . . . , hn to produce a filtered output signal:

yk =
n∑

i=−n
hiuk−i.

• Sparing the details, the output power at frequency ν is given by

|H(ν)|

where

H(ν) =
n∑

k=−n

hke
2πikν,

• Similarly, the mean squared deviation from a flat frequency response over a frequency
range, say L ⊂ [0, 1], is given by

1

|L|

∫
L
|H(ν)− 1|2 dν



Filter Design: Woofer, Midrange, Tweeter

minimize ρ

subject to

∫ 1

0

(
Hw(ν) +Hm(ν) +Ht(ν)− 1

)2
dν ≤ ε(

1

|W |

∫
W

H2
w(ν)dν

)1/2

≤ ρ W = [.2, .8](
1

|M |

∫
M

H2
m(ν)dν

)1/2

≤ ρ M = [.4, .6] ∪ [.9, .1](
1

|T |

∫
T

H2
t (ν)dν

)1/2

≤ ρ T = [.7, .3]

where

Hi(ν) = hi(0) + 2
n−1∑
k=1

hi(k) cos(2πkν), i = W,M, T

hi(k) = filter coefficients, i.e., decision variables



Specific Example

filter length: n = 14

integral discretization: N = 1000

constraints 4
variables 43
time (secs)

loqo 79
minos 164
lancelot 3401
snopt 35

Ref: J.O. Coleman, U.S. Naval Research Laboratory,

CISS98 paper available:

Click here for demo

http://www.princeton.edu/~rvdb/ampl/nlmodels/jeffc/index.html


Examples: Nonconvex Optimization Models



Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0

(K(t)− P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2
i (t) + ẏ2i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).



Specific Example

Orbits.mod with n = 3 and (0, 2π) discretized into a 160 pieces gives the following results:

constraints 0
variables 960
time (secs)

loqo 1.1
lancelot 8.7
snopt 287 (no change for last 80% of iterations)

http://www.princeton.edu/~rvdb/WebGL/ducati.html


Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T—time at which ball arrives at hole.



Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:
x(T ) = xf and y(T ) = yf .

In this case, x(T ), y(T ), and the objective function are complicated functions of the two
variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)
can be taken as variables and the physical laws encoded in the differential equation can
be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition
to the quantities being sought, first and possibly second derivatives of those quantities with
respect to the decision variables.
The modern trend is to follow the second approach.



Putting—Continued

Objective:
minimize vx(T )

2 + vy(T )
2.

Constraints:

v = u̇

a = v̇

ma = N + F −mgez
u(0) = u0 u(T ) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...



Putting—Continued

• N = (Nx, Ny, Nz) is the normal force:

Nz = m
g − ax(t)∂z∂x − ay(t)

∂z
∂y
+ az(t)

(∂z
∂x
)2 + (∂z

∂y
)2 + 1

Nx = −∂z
∂x
Nz

Ny = −∂z
∂y
Nz.

• F is the force due to friction:
F = −µ‖N‖ v

‖v‖
.



Putting—Specific Example

• Discretize continuous time into n = 200 discrete time points.

• Use finite differences to approximate the derivatives.

constraints 597
variables 399
time (secs)

loqo 14.1
lancelot > 600.0
snopt 4.1

http://www.princeton.edu/~rvdb/putt_atan.wrl


Goddard Rocket Problem

Objective:
maximize h(T );

Constraints:

v = ḣ

a = v̇

θ = −cṁ
ma = (θ − σv2e−h/h0)− gm
0 ≤ θ ≤ θmax

m ≥ mmin

h(0) = 0 v(0) = 0 m(0) = 3

where

• θ = Thrust , m = mass

• θmax, g, σ, c, and h0 are given constants

• h, v, a, Th, and m are functions of time 0 ≤ t ≤ T .



Goddard Rocket Problem—Solution

constraints 399
variables 599
time (secs)

loqo 5.2
lancelot (IL)
snopt (IL)

http://www.princeton.edu/~rvdb/goddard.html

