ORF 522: Lecture 2
 Linear Programming: Chapter 2 The Simplex Method

Robert J. Vanderbei

September 18, 2012

Slides last edited on September 18, 2012

Linear Programming

- Programming $=$ Optimization
- Standard Form

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

- maximize,
- less-than-or-equal-to constraints,
- nonnegative variables
- Solution: any particular choice for the values of x (not necessarily optimal!).
- Feasible Solution: a solution that satisfies all of the constraints (but might not maximize the objective function!)
- Optimal Solution: a solution that is optimal for the problem.

Simplex Method

Feasible \Longrightarrow Optimal

An Example.

$$
\begin{array}{lrl}
\operatorname{maximize} & -x_{1}+3 x_{2}-3 x_{3} \\
\text { subject to } \quad 3 x_{1}-x_{2}-2 x_{3} & \leq 7 \\
& \leq 2 x_{1}-4 x_{2}+4 x_{3} & \leq 3 \\
x_{1} & -2 x_{3} & \leq 4 \\
-2 x_{1}+2 x_{2}+x_{3} & \leq 8 \\
3 x_{1} & \leq 5 \\
& x_{1}, x_{2}, x_{3} & \geq 0 .
\end{array}
$$

Rewrite with slack variables

$$
\begin{array}{rlr}
\operatorname{maximize} & \zeta= & -x_{1}+3 x_{2}-3 x_{3} \\
\text { subject to } & w_{1}=7-3 x_{1}+x_{2}+2 x_{3} \\
& w_{2}=3+2 x_{1}+4 x_{2}-4 x_{3} \\
w_{3}=4-x_{1} & +2 x_{3} \\
w_{4}=8+2 x_{1}-2 x_{2}-x_{3} \\
w_{5}=5-3 x_{1} & \\
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \geq 0 .
\end{array}
$$

Notes:

- This layout is called a dictionary.
- Setting x_{1}, x_{2}, and x_{3} to 0 , we can read off the values for the other variables: $w_{1}=7$, $w_{2}=3$, etc. This specific solution is called a dictionary solution.
- Dependent variables, on the left, are called basic variables.
- Independent variables, on the right, are called nonbasic variables.

Dictionary Solution is Feasible

$$
\begin{array}{rlr}
\operatorname{maximize} & \zeta & =-x_{1}+3 x_{2}-3 x_{3} \\
\text { subject to } & w_{1}=7-3 x_{1}+x_{2}+2 x_{3} \\
& w_{2}=3+2 x_{1}+4 x_{2}-4 x_{3} \\
w_{3}=4-2 x_{1} & +2 x_{3} \\
w_{4}=8+2 x_{1}-2 x_{2}-x_{3} \\
w_{5}=5-3 x_{1} \\
x_{1}, & x_{2}, x_{3}, w_{1}, w_{2}, w_{3} w_{4} w_{5} \geq 0
\end{array}
$$

Notes:

- All the variables in the current dictionary solution are nonnegative.
- Such a solution is called feasible.
- The initial dictionary solution need not be feasible-we were just lucky above.

Simplex Method—First Iteration

obj		Current Dictionary			$\mathrm{x} 2+$		x3
	0.0	-1.0	$\mathrm{x} 1+$	3.0		-3.0	
w1	7.0	3.0	x1-	-1.0	x2-	-2.0	x3
w2	3.0	-2.0	x 1	-4.0	x 2	4.0	x3
w3	4.0	1.0	x1	0.0	x2	-2.0	x3
w4 =	8.0	-2.0	x1-	2.0	x2-	1.0	x3
w5 =	5.0	3.0	x1-	0.0	x2-	0.0	x3

- If x_{2} increases, obj goes up.
- How much can x_{2} increase? Until w_{4} decreases to zero.
- Do it. End result: $x_{2}>0$ whereas $w_{4}=0$.
- That is, x_{2} must become basic and w_{4} must become nonbasic.
- Algebraically rearrange equations to, in the words of Jean-Luc Picard, "Make it so."
- This is a pivot.

A Pivot: $x_{2} \leftrightarrow w_{4}$

obj $=$		Current Dictionary			x2 +		x3
	0.0	-1.0	x1 +	3.0		-3.0	
w1	7.0	3.0	x1-	-1.0	$\times 2$ -	-2.0	$\times 3$
w2	3.0	-2.0	x1-	-4.0	$\times 2$ -	4.0	$\times 3$
w3 =	4.0	1.0	x1-	0.0	$\times 2$ -	-2.0	$\times 3$
w4	8.0	-2.0	x1-	2.0	$\times 2$ -	1.0	$\times 3$
w5	5.0	3.0	x1-	0.0	$\times 2$ -	0.0	$\times 3$

becomes

obj =		Current Dictionary			w4 +		x3
	12.0	2.0	$\mathrm{x} 1+$	-1.5		-4.5	
1	11.0	2.0	x1-	0.5	w4-	-1.5	x3
w2	19.0	-6.0	x1-	2.0	w4-	6.0	x3
w3	4.0	1.0	x1-	0.0	w4-	-2.0	x3
x2	4.0	-1.0	x1-	0.5	w4-	0.5	$\times 3$
	5.0	3.0	x1-	0.0	w4-	0.0	x3

Simplex Method-Second Pivot

Here's the dictionary after the first pivot:

obj $=$ w1 =		Current Dictionary			$\begin{aligned} & \text { w4 }+ \\ & \text { w4 } \end{aligned}$		x3
	12.0	2.0	$\mathrm{x} 1+$	-1.5		-4.5	
	11.0	2.0	x1-	0.5		-1.5	x3
w2 =	19.0	-6.0	x1-	2.0	w4-	6.0	x3
w3 =	4.0	1.0	x 1	0.0	w4-	-2.0	x3
x2	4.0	-1.0	x1	0.5	w4-	0.5	x3
w5 =	5.0	3.0	x1-	0.0	w4-	0.0	x3

- Now, let x_{1} increase.
- Of the basic variables, w_{5} hits zero first.
- So, x_{1} enters and w_{5} leaves the basis.
- New dictionary is...

Simplex Method—Final Dictionary

obj $=$		Current Dictionary			w4 +		x3
	46/3	-2/3	w5 +	$-3 / 2$		-9/2	
w1 =	23/3	-2/3	w5-	1/2	w4-	$-3 / 2$	x3
w2	29	2	w5-	2	w4-	6	x3
w3	7/3	$-1 / 3$	w5-	0	w4-	-2	x3
x2	17/3	1/3	w5-	1/2	w4-	1/2	x3
$\mathrm{x} 1=$	5/3	$1 / 3$	w5-	0	w4-	0	x3

- It's optimal (no pink)!
- Click here to practice the simplex method.
- For instructions, click here.

Agenda

- Discuss unboundedness; (today)
- Discuss initialization/infeasibility; i.e., what if initial dictionary is not feasible. (today)
- Discuss degeneracy. (next lecture)

Unboundedness

Consider the following dictionary:

obj $=$		Current Dictionary			$\mathrm{x} 2+$		x3
	0.0	2.0	x 1	-1.0		1.0	
w1	4.0	-5.0	x1-	3.0	x2-	-1.0	x3
w2	10.0	-1.0	x 1	-5.0	x2-	2.0	x3
w3	7.0	0.0	x1-	-4.0	x2	3.0	x3
w4	6.0	-2.0	x1-	-2.0	x2-	4.0	x3
w5 =	6.0	-3.0	x1-	0.0	x2-	-3.0	x3

- Could increase either x_{1} or x_{3} to increase obj.
- Consider increasing x_{1}.
- Which basic variable decreases to zero first?
- Answer: none of them, x_{1} can grow without bound, and obj along with it.
- This is how we detect unboundedness with the simplex method.
- Usually several pivots go by before unboundedness is detected.

Initialization

Not Feasible \Longrightarrow Feasible

Consider the following problem:

$$
\begin{array}{lrl}
\operatorname{maximize} & -3 x_{1}+4 x_{2} \\
\text { subject to } & -4 x_{1}-2 x_{2} & \leq-8 \\
& -2 x_{1} & \leq-2 \\
& 3 x_{1}+2 x_{2} & \leq 10 \\
& -x_{1}+3 x_{2} & \leq 1 \\
& -3 x_{2} & \leq-2 \\
& x_{1}, x_{2} & \geq 0 .
\end{array}
$$

Phase-I Problem

- Modify problem by subtracting a new variable, x_{0}, from each constraint and
- replacing objective function with $-x_{0}$

Phase-I Problem

$$
\begin{aligned}
& \text { maximize } \quad-x_{0} \\
& \text { subject to }-x_{0}-4 x_{1}-2 x_{2} \leq-8 \\
& -x_{0}-2 x_{1} \leq-2 \\
& -x_{0}+3 x_{1}+2 x_{2} \leq 10 \\
& \begin{aligned}
-x_{0}-x_{1}+3 x_{2} & \leq 1 \\
-x_{0} & \leq-2
\end{aligned} \\
& x_{0}, x_{1}, x_{2} \geq 0 \text {. }
\end{aligned}
$$

- Clearly feasible: pick x_{0} large, $x_{1}=0$ and $x_{2}=0$.
- If optimal solution has obj $=0$, then original problem is feasible.
- Final phase-I basis can be used as initial phase-/l basis (ignoring x_{0} thereafter).
- If optimal solution has obj <0, then original problem is infeasible.

Initialization-First Pivot

Applet depiction shows both the Phase-I and the Phase-II objectives:

obj =		Current Dictionary			$\begin{aligned} & \mathrm{x} 1+ \\ & \mathrm{x} 1+ \end{aligned}$		$\begin{aligned} & \mathrm{x} 2 \\ & \mathrm{x} 2 \end{aligned}$
	0.0	0.0	$\mathrm{x} 0+$	-3.0		4.0	
	0.0	-1.0	$\mathrm{x} 0+$	0.0		0.0	
$\mathrm{w} 1=$	-8.0	-1.0	x 0	-4.0	x1-	-2.0	x2
w2	-2.0	-1.0	x01-	-2.0	x1-	0.0	x 2
w3	10.0	-1.0	x01-	3.0	x1-	2.0	x2
w4 =	1.0	-1.0	x01-	-1.0	x 1	3.0	x 2
w5 =	-2.0	-1.0	x01-	0.0	x1-	-3.0	x2

- Dictionary is infeasible even for Phase-I.
- One pivot needed to get feasible.
- Entering variable is x_{0}.
- Leaving variable is one whose current value is most negative, i.e. w_{1}.
- After first pivot...

Initialization-Second Pivot

Going into second pivot:

obj $=$		Current Dictionary			$\mathrm{x} 1+$		x 2
	0.0	0.0	w1 +	-3.0		4.0	
	-8.0	-1.0	w1 +	4.0	$\mathrm{x} 1+$	2.0	x2
x 0	8.0	-1.0	w1-	4.0	x1-	2.0	x2
w2	6.0	-1.0	w1	2.0	x 1	2.0	x 2
w3	18.0	-1.0	w1-	7.0	x1-	4.0	x 2
w4	9.0	-1.0	w1-	3.0	x1-	5.0	x2
w5 =	6.0	-1.0	w1-	4.0	x1-	-1.0	x2

- Feasible!
- Focus on the yellow highlights.
- Let x_{1} enter.
- Then w_{5} must leave.
- After second pivot...

Initialization-Third Pivot

Going into third pivot:

- x_{2} must enter.
- x_{0} must leave.
- After third pivot...

End of Phase-I

Current dictionary:

- Optimal for Phase-I (no yellow highlights).
- $\operatorname{obj}=0$, therefore original problem is feasible.

Phase-II

Current dictionary:

obj =		Current Dictionary			$\begin{aligned} & \text { w5 }+ \\ & \text { w5 + } \end{aligned}$		x 0
	$-7 / 3$	-3/4	w1 +	11/6		0	
	0	0	w1 +	0		0	x0
x 2	$2 / 3$	0	w1-	$-1 / 3$	w5-	0	x 0
w2 =	$4 / 3$	-1/2	w1-	1/3	w5-	0	x 0
w3	11/3	3/4	w1	1/6	w5	0	x 0
w4	$2 / 3$	-1/4	w1-	7/6	w5-	0	x 0
$\mathrm{x} 1=$	5/3	-1/4	w1-	1/6	w5-	0	x 0

For Phase-II:

- Ignore column with x_{0} in Phase-II.
- Ignore Phase-I objective row.
w_{5} must enter. w_{4} must leave...

Optimal Solution

obj $=$		Current Dictionary			$\begin{gathered} \text { w4 }+ \\ \text { w4 + } \end{gathered}$		x0$\times 0$
	-9/7	-5/14	w1 +	-11/7		0	
	0	0	w1 +	0		0	
x2	6/7	-1/14	w1-	2/7	w4 -	0	x0
w2	8/7	-3/7	w1-	-2/7	w4 -	0	$\times 0$
w3	25/7	11/14	w1-	-1/7	w4 -	0	$\times 0$
w5	4/7	-3/14	w1-	6/7	w4 -	0	x0
	11/7	-3/14	w1-	-1/7	w4-	0	x0

- Optimal!
- Click here to practice the simplex method on problems that may have infeasible first dictionaries.
- For instructions, click here.

