ORF 522: Lecture 2

Linear Programming: Chapter 2 The Simplex Method

Robert J. Vanderbei

September 18, 2012

Slides last edited on September 18, 2012

Operations Research and Financial Engineering, Princeton University http://www.princeton.edu/~rvdb

Linear Programming

- Programming = Optimization
- Standard Form

 $\begin{array}{ll} \mbox{maximize} & c^T x \\ \mbox{subject to} & Ax \leq b \\ & x \geq 0. \end{array}$

- maximize,
- less-than-or-equal-to constraints,
- nonnegative variables
- Solution: any particular choice for the values of x (not necessarily optimal!).
- *Feasible Solution*: a solution that satisfies all of the constraints (but might not maximize the objective function!)
- Optimal Solution: a solution that is optimal for the problem.

Simplex Method

 $Feasible \Longrightarrow Optimal$

An Example.

maximize $-x_1 + 3x_2 - 3x_3$ subject to $3x_1 - x_2 - 2x_3 \leq 7$ $-2x_1 - 4x_2 + 4x_3 \leq 3$ $x_1 - 2x_3 \leq 4$ $-2x_1 + 2x_2 + x_3 \leq 8$ $3x_1 \leq 5$ $x_1, x_2, x_3 \geq 0.$

Rewrite with slack variables

maximize $\zeta = -x_1 + 3x_2 - 3x_3$ subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$ $x_1, x_2, x_3, w_1, w_2, w_3, w_4, w_5 \ge 0.$

Notes:

- This *layout* is called a *dictionary*.
- Setting x_1 , x_2 , and x_3 to 0, we can read off the values for the other variables: $w_1 = 7$, $w_2 = 3$, etc. This specific solution is called a *dictionary solution*.
- Dependent variables, on the left, are called *basic variables*.
- Independent variables, on the right, are called *nonbasic variables*.

Dictionary Solution is Feasible

maximize $\zeta = -x_1 + 3x_2 - 3x_3$ subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$

 $x_1, x_2, x_3, w_1, w_2, w_3 w_4 w_5 \geq 0.$

Notes:

- All the variables in the current dictionary solution are nonnegative.
- Such a solution is called *feasible*.
- The initial dictionary solution need not be feasible—we were just lucky above.

Simplex Method—First Iteration

- If x_2 increases, obj goes *up*.
- How much can x_2 increase? Until w_4 decreases to zero.
- Do it. End result: $x_2 > 0$ whereas $w_4 = 0$.
- That is, x_2 must become *basic* and w_4 must become *nonbasic*.
- Algebraically rearrange equations to, in the words of Jean-Luc Picard, "Make it so."
- This is a *pivot*.

A Pivot: $x_2 \leftrightarrow w_4$

becomes

	Current Dictionary											
obj	=	12.0	+	2.0	x1 +	-1.5	w4 +	-4.5	x3			
w1	=	11.0	-	2.0	x1 -	0.5	w4 -	-1.5	x3			
w2	=	19.0	-	-6.0	x1 -	2.0	w4 -	6.0	x3			
wЗ	=	4.0	-	1.0	x1 -	0.0	w4 -	-2.0	x3			
x2	=	4.0	-	-1.0	x1 -	0.5	w4 -	0.5	x3			
w5	=	5.0	-	3.0	x1 -	0.0	w4 -	0.0	x3			

Simplex Method—Second Pivot

Here's the dictionary after the first pivot:

Current Dictionary											
obj	=	12.0	+	2.0	x1 +	-1.5	w4 +	-4.5	x3		
w1	=	11.0	-	2.0	x1 -	0.5	w4 -	-1.5	x3		
w2	=	19.0	-	-6.0	x1 -	2.0	w4 -	6.0	x3		
wЗ	=	4.0	-	1.0	x1 -	0.0	w4 -	-2.0	x3		
x2	=	4.0	-	-1.0	x1 -	0.5	w4 -	0.5	x3		
w5	=	5.0	-	3.0	x1 -	0.0	w4 -	0.0	x3		

- Now, let x_1 increase.
- Of the basic variables, w_5 hits zero first.
- So, x_1 enters and w_5 leaves the basis.
- New dictionary is...

Simplex Method—Final Dictionary

	Current Dictionary										
obj	=	46/3	+	-2/3	w5 +	-3/2	w4 +	-9/2	xЗ		
w1	=	23/3	-	-2/3	w5 -	1/2	w4 -	-3/2	x3		
w2	=	29	-	2	w5 -	2	w4 -	6	x3		
w3	=	7/3	-	-1/3	w5 -	0	w4 -	-2	x3		
x2	=	17/3	-	1/3	w5 -	1/2	w4 -	1/2	x3		
x1	=	5/3	-	1/3	w5 -	0	w4 -	0	x3		

- It's optimal (no pink)!
- Click here to practice the simplex method.
- For instructions, click here.

Agenda

• Discuss *unboundedness;* (today)

• Discuss initialization/infeasibility; i.e., what if initial dictionary is not feasible. (today)

• Discuss *degeneracy*. (next lecture)

Unboundedness

Consider the following dictionary:

	Current Dictionary										
obj	=	0.0	+	2.0	x1 +	-1.0	x2 +	1.0	x3		
w1	=	4.0	-	-5.0	x1 -	3.0	x2 -	-1.0	x3		
w2	=	10.0	-	-1.0	x1 -	-5.0	x2 -	2.0	x3		
wЗ	=	7.0	-	0.0	x1 -	-4.0	x2 -	3.0	x3		
w4	=	6.0	-	-2.0	x1 -	-2.0	x2 -	4.0	x3		
w5	=	6.0	-	-3.0	x1 -	0.0	x2 -	-3.0	x3		

- Could increase either x_1 or x_3 to increase obj.
- Consider increasing x_1 .
- Which basic variable decreases to zero first?
- Answer: none of them, x_1 can grow without bound, and obj along with it.
- This is how we detect *unboundedness* with the simplex method.
- Usually several pivots go by before unboundedness is detected.

Initialization

Not Feasible \implies Feasible

Consider the following problem:

 $\begin{array}{rll} \text{maximize} & -3x_1 & + & 4x_2 \\ \text{subject to} & -4x_1 & - & 2x_2 & \leq & -8 \\ & -2x_1 & & \leq & -2 \\ & & 3x_1 & + & 2x_2 & \leq & 10 \\ & & -x_1 & + & 3x_2 & \leq & 10 \\ & & & -3x_2 & \leq & -2 \\ & & & x_1, \ x_2 & \geq & 0. \end{array}$

Phase-I Problem

- Modify problem by subtracting a new variable, x_0 , from each constraint and
- ullet replacing objective function with $-x_0$

Phase-I Problem

- Clearly feasible: pick x_0 large, $x_1 = 0$ and $x_2 = 0$.
- If optimal solution has obj = 0, then original problem is feasible.
- Final phase-I basis can be used as initial *phase-II* basis (ignoring x_0 thereafter).
- If optimal solution has obj < 0, then original problem is infeasible.

Initialization—First Pivot

Applet depiction shows both the Phase-I and the Phase-II objectives:

				Current	Dict	ionary			
obj	=	0.0	+	0.0	x0 +	-3.0	x1 +	4.0	x2
		0.0	+	-1.0	x0 +	0.0	x1 +	0.0	x2
w1	=	-8.0	-	-1.0	x0 -	-4.0	x1 -	-2.0	x2
w2	=	-2.0	-	-1.0	x0 -	-2.0	x1 -	0.0	x2
wЗ	=	10.0	-	-1.0	x0 -	3.0	x1 -	2.0	x2
w4	=	1.0	-	-1.0	x0 -	-1.0	x1 -	3.0	x2
w5	=	-2.0	-	-1.0	x0 -	0.0	x1 -	-3.0	x2

- Dictionary is infeasible even for Phase-I.
- One pivot needed to get feasible.
- Entering variable is x_0 .
- Leaving variable is one whose current value is most negative, i.e. w_1 .
- After first pivot...

Initialization—Second Pivot

Going into second pivot:

	Current Dictionary									
obj	=	0.0	+	0.0	w1 +	-3.0	x1 +	4.0	x2	
		-8.0	+	-1.0	w1 +	4.0	x1 +	2.0	x2	
$\mathbf{x}0$	=	8.0	[-	-1.0	w1 -	4.0	x1 -	2.0	x2	
w2	=	6.0	[-	-1.0	w1 -	2.0	x1 -	2.0	x2	
wЗ	=	18.0	-	-1.0	w1 -	7.0	x1 -	4.0	x2	
w4	=	9.0	-	-1.0	w1 -	3.0	x1 -	5.0	x2	
w5	=	6.0	-	-1.0	w1 -	4.0	x1 -	-1.0	x2	

- Feasible!
- Focus on the yellow highlights.
- Let x_1 enter.
- Then w_5 must leave.
- After second pivot...

Initialization—Third Pivot

Going into third pivot:

	Current Dictionary											
obj	=	-4.5	+	-0.75	w1 +	0.75	w5 +	3.25	x2			
		-2.0	+	0.0	w1 +	-1.0	w5 +	3.0	x2			
x0	=	2.0	[-	0.0	w1 -	-1.0	w5 -	3.0	x2			
w2	=	3.0	-	-0.5	w1 -	-0.5	w5 -	2.5	x2			
wЗ	=	7.5	[-	0.75	w1 -	-1.75	w5 -	5.75	x2			
w4	=	4.5	[-	-0.25	w1 -	-0.75	w5 -	5.75	x2			
x1	=	1.5	-	-0.25	w1 -	0.25	w5 -	-0.25	x2			

- x_2 must enter.
- x_0 must leave.
- After third pivot...

End of Phase-I

Current dictionary:

	Current Dictionary											
obj	=	-7/3	+	-3/4	w1 +	11/6	w5 +	0	x0			
		0	+	0	w1 +	0	w5 +	0	x0			
x2	=	2/3	-	0	w1 -	-1/3	w5 -	0	x0			
w2	=	4/3	-	-1/2	w1 -	1/3	w5 -	0	x0			
wЗ	=	11/3	-	3/4	w1 -	1/6	w5 -	0	x0			
w4	=	2/3	-	-1/4	w1 -	7/6	w5 -	0	x0			
x1	=	5/3	-	-1/4	w1 -	1/6	w5 -	0	x0			

- Optimal for Phase-I (no yellow highlights).
- obj = 0, therefore original problem is feasible.

Phase-II

Current dictionary:

	Current Dictionary											
obj	=	-7/3	+	-3/4	w1 +	11/6	w5 +	0	x0			
		0	+	0	w1 +	0	w5 +	0	x0			
x2	=	2/3	-	0	w1 -	-1/3	w5 -	0	x0			
w2	=	4/3	-	-1/2	w1 -	1/3	w5 -	0	x0			
wЗ	=	11/3	-	3/4	w1 -	1/6	w5 -	0	x0			
w4	=	2/3	-	-1/4	w1 -	7/6	w5 -	0	x0			
x1	=	5/3	-	-1/4	w1 -	1/6	w5 -	0	x0			

For Phase-II:

- Ignore column with x_0 in Phase-II.
- Ignore Phase-I objective row.

 w_5 must enter. w_4 must leave...

Optimal Solution

	Current Dictionary										
obj	=	-9/7	+	-5/14	w1 +	-11/7	w4 +	0	x0		
		0	+	0	w1 +	0	w4 +	0	x0		
x2	=	6/7	-	-1/14	w1 -	2/7	w4 -	0	x0		
w2	=	8/7	-	-3/7	w1 -	-2/7	w4 -	0	x0		
w3	=	25/7	-	11/14	w1 -	-1/7	w4 -	0	x0		
w5	=	4/7	-	-3/14	w1 -	6/7	w4 -	0	x0		
x1	=	11/7	-	-3/14	w1 -	-1/7	w4 -	0	x0		

- Optimal!
- Click here to practice the simplex method on problems that may have infeasible first dictionaries.
- For instructions, click here.