ORF 522: Lecture 6

Linear Programming: Chapter 6
 Matrix Notation

Robert J. Vanderbei

October 2, 2012

Slides last edited at 1:40pm on Monday $1^{\text {st }}$ October, 2012

Operations Research and Financial Engineering, Princeton University
http://www.princeton.edu/~rvdb

An Example

Consider

$$
\begin{array}{lr}
\operatorname{maximize} & 3 x_{1}+4 x_{2}-2 x_{3} \\
\text { subject to } & x_{1}+0.5 x_{2}-5 x_{3} \leq 2 \\
& 2 x_{1}-1 x_{2}+3 x_{3} \leq 3 \\
& \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Add slacks (using x 's for slack variables):

$$
\begin{aligned}
x_{1}+0.5 x_{2}-5 x_{3}+x_{4} & =2 \\
2 x_{1}-x_{2}+3 x_{3} & =x_{5}
\end{aligned}=3 .
$$

Cast constraints into matrix notation:

$$
\left[\begin{array}{rrrrr}
1 & 0.5 & -5 & 1 & 0 \\
2 & -1 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Similarly cast objective function:

$$
\left[\begin{array}{r}
3 \\
4 \\
-2 \\
0 \\
0
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

In general, we have:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Down the Road

Basic Variables: x_{2}, x_{5}.

Nonbasic Variables: x_{1}, x_{3}, x_{4}.

$$
\begin{aligned}
& A x=\left[\begin{array}{rr}
x_{1}+0.5 x_{2}-5 x_{3}+x_{4} \\
2 x_{1}-r & x_{2}+3 x_{3} \\
+x_{5}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.5 x_{2} & +x_{1}-5 x_{3}+x_{4} \\
-x_{2}+x_{5} & +2 x_{1}+3 x_{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.5 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{5}
\end{array}\right]+\left[\begin{array}{rrr}
1 & -5 & 1 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& =B x_{\mathcal{B}}+N x_{\mathcal{N}} .
\end{aligned}
$$

General Matrix Notation

Up to a rearrangement of columns,

$$
A \stackrel{\mathrm{R}}{=}\left[\begin{array}{ll}
B & N
\end{array}\right]
$$

Similarly, rearrange rows of x and c :

$$
x \stackrel{\mathrm{R}}{=}\left[\begin{array}{c}
x_{\mathcal{B}} \\
x_{\mathcal{N}}
\end{array}\right] \quad c \stackrel{\mathrm{R}}{=}\left[\begin{array}{c}
c_{\mathcal{B}} \\
c_{\mathcal{N}}
\end{array}\right]
$$

Constraints:

$$
A x=b \quad \Longleftrightarrow \quad B x_{\mathcal{B}}+N x_{\mathcal{N}}=b
$$

Objective:

$$
\zeta=c^{T} x \quad \Longleftrightarrow \quad c_{\mathcal{B}}^{T} x_{\mathcal{B}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}}
$$

Matrix B is $m \times m$ and invertible! Why?

Express $x_{\mathcal{B}}$ and ζ in terms of $x_{\mathcal{N}}$:

$$
\begin{aligned}
x_{\mathcal{B}} & =B^{-1} b-B^{-1} N x_{\mathcal{N}} \\
\zeta & =c_{\mathcal{B}}^{T} x_{\mathcal{B}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}} \\
& =c_{\mathcal{B}}^{T} B^{-1} b-\left(\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}\right)^{T} x_{\mathcal{N}}
\end{aligned}
$$

Dictionary in Matrix Notation

$$
\begin{aligned}
\zeta & =c_{\mathcal{B}}^{T} B^{-1} b-\left(\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}\right)^{T} x_{\mathcal{N}} \\
x_{\mathcal{B}} & =B^{-1} b-B^{-1} N x_{\mathcal{N}}
\end{aligned}
$$

Example Revisited

$$
\begin{gathered}
B=\left[\begin{array}{ll}
0.5 & 0 \\
-1 & 1
\end{array}\right] \Longrightarrow B^{-1}=\left[\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right] \\
B^{-1} b=\left[\begin{array}{l}
4 \\
7
\end{array}\right] \\
B^{-1} N=\left[\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & 1 \\
2 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrr}
2 & -10 & 2 \\
4 & -7 & 2
\end{array}\right] \\
\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}=\left[\begin{array}{rr}
2 & 4 \\
-10 & -7 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{r}
3 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{r}
5 \\
-38 \\
8
\end{array}\right] \\
c_{\mathcal{B}}^{T} B^{-1} b=[40]\left[\begin{array}{l}
4 \\
7
\end{array}\right]=16
\end{gathered}
$$

Sanity Check

$$
\begin{aligned}
& \zeta= \\
& x_{4}=2-3 x_{1}+4 x_{2}-2 x_{3} \\
& x_{5}=3-2 x_{1}+0.5 x_{2}+5 x_{3} \\
& x_{2}-3 x_{3} .
\end{aligned}
$$

Let x_{2} enter and x_{4} leave.

$$
\begin{aligned}
\zeta & =16-5 x_{1}-8 x_{4}+38 x_{3} \\
\hline x_{2} & =4-2 x_{1}-2 x_{4}+10 x_{3} \\
x_{5} & =7-4 x_{1}-2 x_{4}+7 x_{3} .
\end{aligned}
$$

Dual Stuff

Associated Primal Solution:

$$
\begin{aligned}
x_{\mathcal{N}}^{*} & =0 \\
x_{\mathcal{B}}^{*} & =B^{-1} b
\end{aligned}
$$

Dual Variables:

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}, w_{1}, \ldots, w_{m}\right) & \longrightarrow\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \\
\left(z_{1}, \ldots, z_{n}, y_{1}, \ldots, y_{m}\right) & \longrightarrow\left(z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{n+m}\right)
\end{aligned}
$$

Associated Dual Solution:

$$
\begin{aligned}
z_{\mathcal{B}}^{*} & =0 \\
z_{\mathcal{N}}^{*} & =\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}
\end{aligned}
$$

Associated Solution Value:

$$
\zeta^{*}=c_{\mathcal{B}}^{T} B^{-1} b
$$

Primal Dictionary:

$$
\begin{aligned}
\zeta & =\zeta^{*}-z_{\mathcal{N}}^{*} x_{\mathcal{N}} \\
x_{\mathcal{B}} & =x_{\mathcal{B}}^{*}-B^{-1} N x_{\mathcal{N}}
\end{aligned}
$$

Dual Dictionary:

$$
\begin{aligned}
-\xi & =-\zeta^{*}-x_{\mathcal{B}}^{* T} z_{\mathcal{B}} \\
z_{\mathcal{N}} & =z_{\mathcal{N}}^{*}+\left(B^{-1} N\right)^{T} z_{\mathcal{B}}
\end{aligned}
$$

What have we gained?

1. A notation for doing proofs-no more proof by example.
2. Serious implementations of the simplex method avoid ever explicitly forming $B^{-1} N$. Reason:

- The matrices B and N are sparse.
- But B^{-1} is likely to be fully dense.
- Even if B^{-1} is not dense, $B^{-1} N$ is going to be worse.
- It's better simply to solve

$$
B x_{\mathcal{B}}=b-N x_{\mathcal{N}}
$$

efficiently.

- This is subject of next chapter.
- We'll skip it this year.

Primal Simplex

Suppose $x_{\mathcal{B}}^{*} \geq 0$ while $\left(z_{\mathcal{N}}^{*} \not \geq 0\right)$ \{

$$
\text { pick } j \in\left\{j \in \mathcal{N}: z_{j}^{*}<0\right\}
$$

$\Delta x_{\mathcal{B}}=B^{-1} N e_{j}$
$t=\left(\max _{i \in \mathcal{B}} \frac{\Delta x_{i}}{x_{i}^{*}}\right)^{-1}$
pick $i \in \operatorname{argmax}_{i \in \mathcal{B}} \frac{\Delta x_{i}}{x_{i}^{*}}$
$\Delta z_{\mathcal{N}}=-\left(B^{-1} N\right)^{T} e_{i}$
$s=\frac{z_{j}^{*}}{\Delta z_{j}}$
$x_{j}^{*} \leftarrow t, \quad x_{\mathcal{B}}^{*} \leftarrow x_{\mathcal{B}}^{*}-t \Delta x_{\mathcal{B}}$
$z_{i}^{*} \leftarrow s, \quad z_{\mathcal{N}}^{*} \leftarrow z_{\mathcal{N}}^{*}-s \Delta z_{\mathcal{N}}$
$\mathcal{B} \leftarrow \mathcal{B} \backslash\{i\} \cup\{j\}$

Dual Simplex

Suppose $z_{\mathcal{N}}^{*} \geq 0$ while $\left(x_{\mathcal{B}}^{*} \nsupseteq 0\right)\{$

$$
\text { pick } i \in\left\{i \in \mathcal{B}: x_{i}^{*}<0\right\}
$$

$$
\Delta z_{\mathcal{N}}=-\left(B^{-1} N\right)^{T} e_{i}
$$

$$
s=\left(\max _{j \in \mathcal{N}} \frac{\Delta z_{j}}{z_{j}^{*}}\right)^{-1}
$$

$$
\text { pick } j \in \operatorname{argmax}_{j \in \mathcal{N}} \frac{\Delta z_{j}}{z_{j}^{*}}
$$

$$
\Delta x_{\mathcal{B}}=B^{-1} N e_{j}
$$

$$
t=\frac{x_{i}^{*}}{\Delta x_{i}}
$$

$$
x_{j}^{*} \leftarrow t, \quad x_{\mathcal{B}}^{*} \leftarrow x_{\mathcal{B}}^{*}-t \Delta x_{\mathcal{B}}
$$

$$
z_{i}^{*} \leftarrow s, \quad \quad z_{\mathcal{N}}^{*} \leftarrow z_{\mathcal{N}}^{*}-s \Delta z_{\mathcal{N}}
$$

$$
\mathcal{B} \leftarrow \mathcal{B} \backslash\{i\} \cup\{j\}
$$

Symmetry Lost

B is $m \times m$. Why not $n \times n$? What's go'in on?

A Problem and Its Dual

minimize $\quad b^{T} y$ subject to $\quad \begin{aligned} A^{T} y & \geq c \\ y & \geq 0\end{aligned}$

Add Slacks

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x+w=b \\
& x, w \geq 0
\end{array}
\end{array}
$$

New Notations for Primal

$$
\bar{A}=\left[\begin{array}{ll}
A & I
\end{array}\right], \quad \bar{c}=\left[\begin{array}{l}
c \\
0
\end{array}\right], \quad \bar{x}=\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

New Notations for Dual

$$
\hat{A}=\left[\begin{array}{cc}
-I & A^{T}
\end{array}\right], \quad \hat{b}=\left[\begin{array}{l}
0 \\
b
\end{array}\right], \quad \hat{z}=\left[\begin{array}{l}
z \\
y
\end{array}\right]
$$

Primal and Dual

$$
\begin{array}{llll}
\operatorname{maximize} & \bar{c}^{T} \bar{x} & \text { minimize } & \hat{b}^{T} \hat{z} \\
\text { subject to } & \bar{A} \bar{x}=b & \text { subject to } & \hat{A} \hat{z}=c \\
& \bar{x} \geq 0 & & \hat{z} \geq 0
\end{array}
$$

Symmetry Regained...

On the Primal Side:

$$
\left[\begin{array}{lll}
A & I
\end{array}\right] \stackrel{\mathrm{R}}{=}\left[\begin{array}{ll}
\bar{N} & \bar{B}
\end{array}\right]
$$

On the Dual Side:

$$
\left[\begin{array}{ll}
-I & A^{T}
\end{array}\right] \stackrel{\mathrm{R}}{=}\left[\begin{array}{ll}
\hat{B} & \hat{N}
\end{array}\right]
$$

And Again:

$$
\begin{aligned}
\bar{A} \hat{A}^{T} & =\left[\begin{array}{ll}
\bar{N} & \bar{B}
\end{array}\right]\left[\begin{array}{c}
\hat{B}^{T} \\
\hat{N}^{T}
\end{array}\right] \\
& =\bar{N} \hat{B}^{T}+\bar{B} \hat{N}^{T}
\end{aligned}
$$

The Two Expressions Must Be Equal:

$$
\bar{N} \hat{B}^{T}+\bar{B} \hat{N}^{T}=0
$$

But That's the Negative Transpose Property:

$$
\bar{B}^{-1} \bar{N}=-\left(\hat{B}^{-1} \hat{N}\right)^{T}
$$

