ORF 522: Lecture 7

Linear Programming: Chapter 7 Sensitivity and Parametric Analysis

Robert J. Vanderbei

October 4, 2012

Slides last edited at 12:53 Noon on Thursday 4th October, 2012

Operations Research and Financial Engineering, Princeton University http://www.princeton.edu/~rvdb

Restarting

Consider an optimal dictionary:

 $\begin{aligned}
\zeta &= \zeta^* - z_{\mathcal{N}}^{*\,T} x_{\mathcal{N}} \\
x_{\mathcal{B}} &= x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}.
\end{aligned}
\qquad \begin{aligned}
x_{\mathcal{B}}^* &= B^{-1} b \\
z_{\mathcal{N}}^* &= (B^{-1} N)^T c_{\mathcal{B}} - c_{\mathcal{N}} \\
\zeta^* &= c_{\mathcal{B}}^T B^{-1} b.
\end{aligned}$

Recall definitions of $x_{\mathcal{B}}^*$, $z_{\mathcal{N}}^*$, and ζ^* :

Now, suppose objective coefficients change from c to \tilde{c} . To adjust current dictionary,

- \bullet recompute $z^*_{\mathcal{N}}\text{, and}$
- recompute ζ^* .

Note that $x^*_{\mathcal{B}}$ remains unchanged. Therefore,

- Adjusted dictionary is *primal feasible*.
- Apply primal simplex method.
- Likely to reach optimality quickly.

Had it been the right-hand sides b that changed, then

- Adjusted dictionary would be *dual feasible*.
- Could apply dual simplex method.

Ranging

Given an optimal dictionary:

$$\begin{aligned} \zeta &= \zeta^* - z_{\mathcal{N}}^* {}^T x_{\mathcal{N}} \\ x_{\mathcal{B}} &= x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}. \end{aligned}$$

Question: If c were to change to

$$\tilde{c} = c + \mu \Delta c,$$

for what range of μ 's does the current basis remain optimal? Recall that:

$$z_{\mathcal{N}}^* = (B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}}$$

Therefore, dual variables change as follows by $\mu\Delta z_{\mathcal{N}}$ where

$$\Delta z_{\mathcal{N}} = (B^{-1}N)^T \Delta c_{\mathcal{B}} - \Delta c_{\mathcal{N}}$$

We want:

$$z_{\mathcal{N}}^* + \mu \Delta z_{\mathcal{N}} \ge 0$$

From familiar ratio tests, we get

$$\left(\min_{j\in\mathcal{N}}-\frac{\Delta z_j}{z_j^*}\right)^{-1} \le \mu \le \left(\max_{j\in\mathcal{N}}-\frac{\Delta z_j}{z_j^*}\right)^{-1}.$$

Comments:

- A similar analysis works for changes to the right-hand side.
- An example is worked out in the text.

Ranging with the Pivot Tool.

An initial dictionary:

The optimal dictionary:

obj	=	8.0			+	-1.0	w4	+	-1.0	w5
					+	1.0	w4	+	0.0	w5
w1	=	4.0	+	2.0	-	1.0	w4	-	0.0	w5
w2	=	3.0	+	2.0	-	-1.0	w4	-	2.0	w5
w 3	=	1.0	+	1.0	-	-1.0	w4	-	1.0	w5
w6	=	1.0	+	0.0	-	1.0	w4	-	-2.0	w5
x2	=	2.0	+	0.0	-	1.0	w4	-	-1.0	w5
x1	=	3.0	+	1.0	-	0.0	w4	-	1.0	w5

Question: If the coefficient on x_2 in original problem were changed to $1 + \mu$ (and everything remains unchanged), for what range of μ 's does the current basis remain optimal?

Ranging with the Pivot Tool–Continued.

Set artificial rhs column to zeros.

Set artificial objective row to " x_2 ":

					-					
obj	=	8.0			+	-1.0	w4	+	-1.0	w5
					+	-1.0	w4	+	1.0	w5
w1	=	4.0	+	0.0	-	1.0	w4	-	0.0	w5
w2	=	3.0	+	0.0	-	-1.0	w4	-	2.0	w5
w3	=	1.0	+	0.0	-	-1.0	w4	-	1.0	w5
₩б	=	1.0	+	0.0	-	1.0	w4	-	-2.0	w5
x 2	=	2.0	+	0.0	-	1.0	w4	-	-1.0	w5
x1	=	3.0	+	0.0	-	0.0	w4	-	1.0	w5
								-		
-1.	0	≪ mu ≪ 1	. 0							

The range of μ values is shown at the bottom of the pivot tool.

The Primal-Dual Simplex Method.

An Example

Initial Dictionary:

Note: neither primal nor dual feasible.

Perturb

Introduce a parameter μ and perturb:

$$\zeta = -3x_1 + 11x_2 + 2x_3 -\mu x_1 - \mu x_2 - \mu x_3 w_1 = 5 + \mu + x_1 - 3x_2 w_2 = 4 + \mu - 3x_1 - 3x_2 w_3 = 6 + \mu - 3x_2 - 2x_3 w_4 = -4 + \mu + 3x_1 + 5x_3$$

For μ large, dictionary is **optimal**.

Question: For which μ values is dictionary optimal? Answer:

Note: only those marked with (*) give inequalities that omit $\mu = 0$. Tightest:

 $\mu \geq 11$

Achieved by: objective row perturbation on x_2 . Let x_2 enter.

Who Leaves?

Do ratio test using current lowest μ value, i.e. $\mu = 11$:

Tightest:

 $4 + 11 - 3x_2 \ge 0.$

Achieved by: constraint containing basic variable w_2 . Let w_2 leave.

After the pivot:

Second Pivot

Using the *advanced* pivot tool, the current dictionary is:

obj	=	14.6667]		+	-14.0	x1 +	-3.6667	w2 +	2.0	x 3
					+	0.0	x1 +	0.3333	w2 +	-1.0	x 3
v1	=	1.0	+	0.0]-	-4.0	x1 -	-1.0	w2 -	0.0	x 3
x 2	=	1.3333	+	0.3333]-	1.0	x1 -	0.3333	w2 -	0.0	x 3
w3	=	2.0	+	0.0]-	-3.0	x1 -	-1.0	w2 -	2.0	x 3
w4	=	-4.0	÷	1.0	-	-3.0	x1 -	0.0	w2 -	-5.0	x 3

Note: the parameter μ is not shown. But it is there! Question: For which μ values is dictionary optimal? Answer:

$$\begin{array}{rcrcrcr}
-14 & \leq & 0 \\
-3.67 & + & 0.33\mu & \leq & 0 \\
\hline
2 & - & \mu & \leq & 0 & * \\
\hline
1 & \geq & 0 & \\
1.33 & + & 0.33\mu & \geq & 0 \\
2 & & \geq & 0 & \\
-4 & + & \mu & \geq & 0 & *
\end{array}$$

Tightest lower bound:

 $\mu \ge 4$

Achieved by: constraint containing basic variable w_4 . Let w_4 leave.

Second Pivot–Continued

Who shall enter? Recall the current dictionary:

obj	=	14.6667]		+	-14.0	x1 +	-3.6667	w2 +	2.0	x3
					+	0.0	x1 +	0.3333	w2 +	-1.0	x3
v1	=	1.0	+	0.0	-	-4.0	x1 -	-1.0	w2 -	0.0	x 3
x 2	=	1.3333	+	0.3333	-	1.0	x1 -	0.3333	w2 -	0.0	x 3
w3	=	2.0	+	0.0]-	-3.0	x1 -	-1.0	w2 -	2.0	x 3
w4	=	-4.0	÷	1.0	-	-3.0	x1 -	0.0	w2 -	-5.0	x 3

Do *dual-type* ratio test using current lowest μ value, i.e. $\mu = 4$:

Tightest:

$$-2 + 1 * 4 - 5y_4 \ge 0.$$

Achieved by: objective term containing nonbasic variable x_3 . Let x_3 enter.

Third Pivot

The current dictionary is:

obj	=	16.2667			+	-15.2	x1 +	-3.6667	w2 +	0.4	w4
					+	0.6	x1 +	0.3333	w2 +	-0.2	w4
v1	=	1.0	+	0.0	-	-4.0	x1 -	-1.0	w2 -	0.0	w4
x 2	=	1.3333	+	0.3333	-	1.0	x1 -	0.3333	w2 -	0.0	w4
w3	=	0.4	+	0.4]-	-4.2	x1 -	-1.0	w2 -	0.4	w4
x 3	=	0.8	+	-0.2	-	0.6	x1 -	0.0	w2 -	-0.2	w4

Question: For which μ values is dictionary optimal? Answer:

Tightest lower bound:

 $\mu \geq 2$

Achieved by: objective term containing nonbasic variable w_4 . Let w_4 enter.

Third Pivot–Continued

Who shall leave? Recall the current dictionary:

obj	=	16.2667]		+	-15.2	x1 +	-3.6667	w2 +	0.4	w4
					+	0.6	x1 +	0.3333	w2 +	-0.2	w4
w1	=	1.0	+	0.0]-	-4.0	x1 -	-1.0	w2 -	0.0	w4
×2	=	1.3333	+	0.3333	-	1.0	x1 -	0.3333	w2 -	0.0	w4
w3	=	0.4	+	0.4	-	-4.2	x1 -	-1.0	w2 -	0.4	w4
x 3	=	0.8	+	-0.2	-	0.6	x1 -	0.0	w2 -	-0.2	w4

Do *primal-type* ratio test using current lowest μ value, i.e. $\mu = 2$:

Tightest:

$$0.4 + 0.4 * 2 - 0.4w_4 \ge 0$$

Achieved by: constraint containing basic variable w_3 . Let w_3 leave.

Fourth Pivot

The current dictionary is:

obj	=	16.6667			+	-11.0	x1 +	-2.6667	w2 +	-1.0	w3
					+	-1.5	x1 +	-0.1667	w2 +	0.5	w3
v1	=	1.0	+	0.0	-	-4.0	x1 -	-1.0	w2 -	0.0	w3
×2	=	1.3333	+	0.3333	-	1.0	x1 -	0.3333	w2 -	0.0	w3
w4	=	1.0	+	1.0	-	-10.5	x1 -	-2.5	w2 -	2.5	w3
x 3	=	1.0	+	0.0	-	-1.5	x1 -	-0.5	w2 -	0.5	w3

It's **optimal**! Also, the range of μ values includes $\mu = 0$:

That is,

$$-1 \le \mu \le 2$$

Range of μ values is shown at bottom of pivot tool. Invalid ranges are highlighted in yellow.