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Rock-Paper-Scissors

A two person game.

Rules: At the count of three declare one of:

Rock Paper Scissors

Winner Selection. ldentical selection is a draw. Otherwise:
e Rock beats Scissors
e Paper beats Rock

e Scissors beats Paper

Check out Sam Kass' version: Rock, Paper, Scissors, Lizard, Spock

It was featured recently on The Big Bang Theory.


http://en.wikipedia.org/wiki/Rock-paper-scissors
http://en.wikipedia.org/wiki/Rock-paper-scissors
http://en.wikipedia.org/wiki/Rock-paper-scissors
http://www.samkass.com/theories/RPSSL.html
http://www.youtube.com/watch?v=Kov2G0GouBw

Payoff Matrix

Payoffs are from row player to column player:
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Note: Any deterministic strategy employed by either player can be defeated systematically
by the other player.



Two-Person Zero-Sum Games

Given: m X n matrix A.

e Row player (rowboy) selects a strategy i € {1,...,m}.
e Col player (colgirl) selects a strategy j € {1,...,n}.

e Rowboy pays colgirl a;; dollars.

Note: The rows of A represent deterministic strategies for rowboy, while columns of A
represent deterministic strategies for colgirl.

Deterministic strategies are usually bad.



Randomized Strategies.

e Suppose rowboy picks 7 with probability ;.
e Suppose colgirl picks 7 with probability ;.

Throughout, z = |21 5 -+ x, ]T and y = [y ¥ - Yn ]T will denote stochastic
vectors:
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If rowboy uses random strategy y and colgirl uses x, then expected payoff from rowboy to

colgirl is
E E YiQ; ;T = yTAaf
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Colgirl’s Analysis

Suppose colgirl were to adopt strategy x.

Then, rowboy's best defense is to use y that minimizes the expected payment:

min y’ Az
Yy

And so colgirl should choose that z which maximizes these possibilities:

max miny’ Az
Ty



Solving Max-Min Problems as LPs

Inner optimization is easy:

min gy’ Az = mine! Ax
Y 1

(e; denotes the vector that's all zeros except for a one in the i-th position—that is, deter-
ministic strategy 7).

Note: Reduced a minimization over a continuum to one over a finite set.

We have:

max (min e Ax)
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Reduction to a Linear Programming Problem

Introduce a scalar variable v representing the value of the inner minimization:
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x; > 0, 17=12...,n.
Weriting in pure matrix-vector notation:
max v
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(e denotes the vector of all ones).



Finally, in Block Matrix Form




Rowboy’s Perspective

Similarly, rowboy seeks y* attaining:

which is equivalent to:
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Rowboy’s Problem in Block-Matrix Form

—AT e[yl >0
el 0||lul =11
y=>0
u free

Note: Rowboy's problem is dual to colgirl's.



MiniMax Theorem

Let «* denote colgirl’s solution to her max—min problem.

Let y* denote rowboy’s solution to his min—max problem.
Then

T .
max y* Az = min y' Ax*.
z v

Proof. From Strong Duality Theorem, we have

u =v"
Also,
v* = mine! Ar* = miny’ Az”
i y
T T
u' = maxy" Ae; = maxy" Ax
i T
QED

“As far as | can see, there could be no theory of games...without that theorem...l thought
there was nothing worth publishing until the Minimax Theorem was proved” — John von
Neumann



AMPL Model

set ROWS;
set COLS;

param A {ROWS,COLS} default O;

var x{COLS} >= 0;
var v;

maximize zot: Vv;

subject to ineqs {i in ROWS}:
sum{j in COLS} -A[i,j] * x[j] + v <= 0;

subject to equal:
sum{j in COLS} x[j] = 1;



AMPL Data

data;
set ROWS := P S R;
set COLS := P S R;
param A: P S R:=
P O 1 -2
S -3 0 4
R 5-6 0
solve;
printf {j in COLS}: " %3s %10.7f \n", j, 102*xx[j];
printf {i in ROWS}: " %3s %10.7f \n", i, 102*ineqs[i];

printf: "Value = %10.7f \n", 102x*v;



AMPL Output

ampl gamethy.mod
LOQO: optimal solution (12 iterations)

primal objective -0.1568627451
dual objective -0.1568627451
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Dual of Problems in General Form

Consider:
max ¢! x
Axz = b
z > 0

Rewrite equality constraints as pairs of in-
equalities:

max ¢’
Axr < b
—Ax < —b
rx > 0

Put into block-matrix form:

maXCTx
A < b
_A|T < | b
xr > 0

Dual is:
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Which is equivalent to:
min b’ (y* —y")
Al(y" —y7)
vy
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Finally, letting y = y™ — y~, we get

min b’y
Aly > ¢
J free.



Moral

e Equality constraints = free variables in dual.

e Inequality constraints = nonnegative variables in dual.

Corollary:
e Free variables = equality constraints in dual.

e Nonnegative variables = inequality constraints in dual.



A Real-World Example

The Ultra-Conservative Investor

Consider again the historical investment data (S5;(?)):
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We can let let R;;, = S;(t)/S;(t —1) and view R as a payoff matrix in a game between Fate
and the /nvestor.




Fate’s Conspiracy

The columns represent pure strategies for our conservative investor.

The rows represent how history might repeat itself.

Of course, for tomorrow, Fate won't just repeat a previous year but, rather, will present some
mixture of these previous years.

Likewise, the investor won't put all of her money into one asset. Instead she will put a certain
fraction into each.

Using this data in the game-theory AMPL model, we get the following mixed-strategy per-
centages for Fate and for the investor.

Investor’s Optimal Asset Mix: Mean, old Fate’'s Mix:
XLP  90.7 2008-10-08 37.6
QQRQQ 9.3 2008-11-28 62.4

The value of the game is the investor's expected return, 94.3%, which is actually a loss of
5.7%.



AMPL Model

set ROWS;
set COLS;

param A {ROWS,COLS} default O;

var x{COLS} >= 0;
var v;

maximize zot: v;
subject to ineqs {i in ROWS}: sum{j in COLS} -A[i,j] * x[j] + v <= 0;

subject to equal: sum{j in COLS} x[j] = 1;

data;
set COLS := xlu x1b x1i xlv x1f xle mdy xlk xly xlp qqqq Spy;
set ROWS := include ’dates.out’;

param A: xlu x1lb x1i xlv x1f xle mdy xlk xly xlp qqqq spy:=
include ’amplreturn3d.data’ ;

solve;

printf "Investor’s strategy\n';

printf {j in COLS: x[j]>0.0005}: " %40s %5.1f \n", j, 100*x[j];

printf "\n";

printf "God’s strategy\n";

printf {i in ROWS: ineqs[i]>0.0005}: " %40s %5.1f \n", i, 100*ineqs[i];



