ORF 522: Lecture 8

Linear Programming: Chapter 11 Game Theory

Robert J. Vanderbei

October 9, 2012

Slides last edited at 11:51am on Tuesday $9^{\text {th }}$ October, 2012

Operations Research and Financial Engineering, Princeton University
http://www.princeton.edu/~rvdb

Rock-Paper-Scissors

A two person game.

Rules: At the count of three declare one of:
Rock Paper Scissors

Winner Selection. Identical selection is a draw. Otherwise:

- Rock beats Scissors
- Paper beats Rock
- Scissors beats Paper

Check out Sam Kass' version: Rock, Paper, Scissors, Lizard, Spock

It was featured recently on The Big Bang Theory.

Payoff Matrix

Payoffs are from row player to column player:

$$
A=\begin{gathered}
\\
R \\
P \\
S
\end{gathered}\left[\begin{array}{rrr}
R & P & S \\
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Note: Any deterministic strategy employed by either player can be defeated systematically by the other player.

Two-Person Zero-Sum Games

Given: $m \times n$ matrix A.

- Row player (rowboy) selects a strategy $i \in\{1, \ldots, m\}$.
- Col player (colgirl) selects a strategy $j \in\{1, \ldots, n\}$.
- Rowboy pays colgirl $a_{i j}$ dollars.

Note: The rows of A represent deterministic strategies for rowboy, while columns of A represent deterministic strategies for colgirl.

Deterministic strategies are usually bad.

Randomized Strategies.

- Suppose rowboy picks i with probability y_{i}.
- Suppose colgirl picks j with probability x_{j}.

Throughout, $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$ and $y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{m}\end{array}\right]^{T}$ will denote stochastic vectors:

$$
\begin{aligned}
x_{j} & \geq 0, \quad j=1,2, \ldots, n \\
\sum_{j} x_{j} & =1
\end{aligned}
$$

If rowboy uses random strategy y and colgirl uses x, then expected payoff from rowboy to colgirl is

$$
\sum_{i} \sum_{j} y_{i} a_{i j} x_{j}=y^{T} A x
$$

Colgirl's Analysis

Suppose colgirl were to adopt strategy x.

Then, rowboy's best defense is to use y that minimizes the expected payment:

$$
\min _{y} y^{T} A x
$$

And so colgirl should choose that x which maximizes these possibilities:

$$
\max _{x} \min _{y} y^{T} A x
$$

Solving Max-Min Problems as LPs

Inner optimization is easy:

$$
\min _{y} y^{T} A x=\min _{i} e_{i}^{T} A x
$$

(e_{i} denotes the vector that's all zeros except for a one in the i-th position-that is, deterministic strategy i).

Note: Reduced a minimization over a continuum to one over a finite set.

We have:

$$
\begin{aligned}
& \max \left(\min _{i} e_{i}^{T} A x\right) \\
& \sum_{j} x_{j}=1, \\
& x_{j} \geq 0, \quad j=1,2, \ldots, n .
\end{aligned}
$$

Reduction to a Linear Programming Problem

Introduce a scalar variable v representing the value of the inner minimization:

$$
\begin{aligned}
& \max v \\
& v \leq e_{i}^{T} A x, \quad i=1,2, \ldots, m \\
& \sum_{j} x_{j}=1 \\
& x_{j} \geq 0, \quad j=1,2, \ldots, n .
\end{aligned}
$$

Writing in pure matrix-vector notation:

$$
\begin{aligned}
& \max v \\
& v e-A x \leq 0 \\
& e^{T} x=1 \\
& x \geq 0
\end{aligned}
$$

(e denotes the vector of all ones).

Finally, in Block Matrix Form

$$
\begin{gathered}
\max \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
v
\end{array}\right] \\
{\left[\begin{array}{cc}
-A & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
x \geq 0 \\
v \text { free }
\end{gathered}
$$

Rowboy's Perspective

Similarly, rowboy seeks y^{*} attaining:

$$
\min _{y} \max _{x} y^{T} A x
$$

which is equivalent to:

$$
\begin{aligned}
\min u & \\
u e-A^{T} y & \geq 0 \\
e^{T} y & =1 \\
y & \geq 0
\end{aligned}
$$

Rowboy's Problem in Block-Matrix Form

$$
\begin{gathered}
\min \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
{\left[\begin{array}{cc}
-A^{T} & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
y \geq 0 \\
u \text { free }
\end{gathered}
$$

Note: Rowboy's problem is dual to colgirl's.

MiniMax Theorem

Let x^{*} denote colgirl's solution to her max-min problem. Let y^{*} denote rowboy's solution to his min-max problem. Then

$$
\max _{x} y^{* T} A x=\min _{y} y^{T} A x^{*} .
$$

Proof. From Strong Duality Theorem, we have

$$
u^{*}=v^{*}
$$

Also,

$$
\begin{aligned}
v^{*} & =\min _{i} e_{i}^{T} A x^{*}=\min _{y} y^{T} A x^{*} \\
u^{*} & =\max _{j} y^{* T} A e_{j}=\max _{x} y^{* T} A x
\end{aligned}
$$

QED

"As far as I can see, there could be no theory of games... without that theorem...I thought there was nothing worth publishing until the Minimax Theorem was proved" - John von Neumann

AMPL Model

```
set ROWS;
set COLS;
param A {ROWS,COLS} default 0;
var x{COLS} >= 0;
var v;
maximize zot: v;
subject to ineqs {i in ROWS}:
    sum{j in COLS} -A[i,j] * x[j] + v <= 0;
subject to equal:
    sum{j in COLS} x[j] = 1;
```


AMPL Data

```
data;
set ROWS := P S R;
set COLS := P S R;
param A: P S R:=
    P 0 1 -2
    S -3 0
    R 5 -6 0
```

solve;
printf $\{j$ in COLS $: ~ " ~ \% 3 s ~ \% 10.7 f ~ \ n ", ~ j, ~ 102 * x[j] ; ~$
printf \{i in ROWS\}: " $\% 3 s \% 10.7 \mathrm{f} \backslash \mathrm{n} ", ~ i, ~ 102 * i n e q s[i] ;$
printf: "Value $=\% 10.7 \mathrm{f} \backslash \mathrm{n} ", 102 * \mathrm{v}$;

AMPL Output

```
ampl gamethy.mod
LOQO: optimal solution (12 iterations)
primal objective -0.1568627451
    dual objective -0.1568627451
        P 40.0000000
        S 36.0000000
        R 26.0000000
        P 62.0000000
        S 27.0000000
        R 13.0000000
Value = -16.0000000
```


Dual of Problems in General Form

Consider:

$$
\begin{aligned}
\max c^{T} x & \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Rewrite equality constraints as pairs of inequalities:

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
-A x & \leq-b \\
x & \geq 0
\end{aligned}
$$

Put into block-matrix form:

$$
\begin{aligned}
& \max c^{T} x \\
& {\left[\begin{array}{r}
A \\
-A
\end{array}\right] x } \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right] \\
& x \geq 0
\end{aligned}
$$

Dual is:

$$
\begin{aligned}
& \min \left[\begin{array}{r}
b \\
-b
\end{array}\right]^{T}\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \\
& {\left[A^{T}-A^{T}\right]\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c} \\
& y^{+}, y^{-} \geq 0
\end{aligned}
$$

Which is equivalent to:

$$
\begin{aligned}
\min b^{T}\left(y^{+}-y^{-}\right) & \\
A^{T}\left(y^{+}-y^{-}\right) & \geq c \\
y^{+}, y^{-} & \geq 0
\end{aligned}
$$

Finally, letting $y=y^{+}-y^{-}$, we get

$$
\begin{aligned}
& \min b^{T} y \\
& A^{T} y \geq c \\
& y \text { free. }
\end{aligned}
$$

Moral

- Equality constraints \Longrightarrow free variables in dual.
- Inequality constraints \Longrightarrow nonnegative variables in dual.

Corollary:

- Free variables \Longrightarrow equality constraints in dual.
- Nonnegative variables \Longrightarrow inequality constraints in dual.

A Real-World Example

The Ultra-Conservative Investor

Consider again the historical investment data $\left(S_{j}(t)\right)$:

We can let let $R_{j, t}=S_{j}(t) / S_{j}(t-1)$ and view R as a payoff matrix in a game between Fate and the Investor.

Fate's Conspiracy

The columns represent pure strategies for our conservative investor.
The rows represent how history might repeat itself.
Of course, for tomorrow, Fate won't just repeat a previous year but, rather, will present some mixture of these previous years.
Likewise, the investor won't put all of her money into one asset. Instead she will put a certain fraction into each.
Using this data in the game-theory AMPL model, we get the following mixed-strategy percentages for Fate and for the investor.

Mean, old Fate's Mix:
2008-10-08 37.6
2008-11-28 62.4

The value of the game is the investor's expected return, 94.3%, which is actually a loss of 5.7\%.

AMPL Model

```
set ROWS;
set COLS;
param A {ROWS,COLS} default 0;
var x{COLS} >= 0;
var v;
maximize zot: v;
subject to ineqs {i in ROWS}: sum{j in COLS} -A[i,j] * x[j] + v <= 0;
subject to equal: sum{j in COLS} x[j] = 1;
data;
set COLS := xlu xlb xli xlv xlf xle mdy xlk xly xlp qqqq spy;
set ROWS := include 'dates.out';
param A: xlu xlb xli xlv xlf xle mdy xlk xly xlp qqqq spy:=
include 'amplreturn3.data' ;
solve;
printf "Investor's strategy\n";
printf {j in COLS: x[j]>0.0005}: " %40s %5.1f \n", j, 100*x[j];
printf "\n";
printf "God's strategy\n";
printf {i in ROWS: ineqs[i]>0.0005}: " %40s %5.1f \n", i, 100*ineqs[i];
```

