Geometry — If the Earth Were Flat!


## Earth

$$
\begin{aligned}
& \alpha=\beta \\
& \text { alternate interior angles are equal } \\
& \beta=\gamma \text { alternate interior angles are equal } \\
& \gamma=\delta \text { angle of incidence equals angle of reflection (from Physics!) } \\
& \delta=\epsilon \text { alternate interior angles are equal }
\end{aligned}
$$

Therefore,

$$
\alpha=\epsilon .
$$

The reflection dips just as far below the horizon as the Sun stands above the horizon.

Geometry - The Earth Is Not Flat

Draw a picture.

Label everything of possible relevance.

Identify what we know:
$\alpha$ Angle between horizon and top of Sun (measured from photo).
$\beta$ Angle between horizon and "top" of Sun in reflection (measured).
$h$ Height of "eye-level" above "water-level".


## Geometry - The Earth Is Not Flat

Everything else is the stuff we need to figure out:

Three Angles:
$\gamma$ Angle of reflection off water.
$\theta$ Angle between observer (me) and point of reflection.
$\varphi$ Angle between observer (me) and point of horizon.

Plus...


Geometry - The Earth Is Not Flat

Three Distances (lengths):
d Distance to point of reflection.
$D$ Distance to horizon.
$r$ Radius of Earth.


## Geometry - The Earth Is Not Flat

Three Distances (lengths):
d Distance to point of reflection.
$D$ Distance to horizon.
$r$ Radius of Earth. $\Leftarrow$ This one is key


69 pixels above horizon

29 pixels below horizon

Sun is 317 pixels in diameter

The Sun is $1 / 2^{\circ}$ in diameter. Therefore, $1^{\circ}$ equals $2 \times 317=634$ pixels. And so,

$$
\alpha=69 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.1088 \text { degrees }
$$

and

$$
\beta=29 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.0457 \text { degrees }
$$

And, we assume that eye level is

$$
h=7 \text { feet }
$$

What We Need To Figure Out:

## Angles:

$\gamma$ Angle of reflection off water.
$\theta$ Angle between observer (me) and point of reflection.
$\varphi$ Angle between observer (me) and point of horizon.
Distances (lengths):
d Distance to point of reflection.
D Distance to horizon.
$r$ Radius of Earth.


What We Need To Figure Out:

## Angles:

$\gamma$ Angle of reflection off water.
$\theta$ Angle between observer (me) and point of reflection.
$\varphi$ Angle between observer (me) and point of horizon.
Distances (lengths):
d Distance to point of reflection.
D Distance to horizon.
$r$ Radius of Earth. $\Leftarrow$ This one is key

That's SIX UNKNOWNS.

We need SIX EQUATIONS.


Equation 1:
The sum of the angles around a quadrilateral is $360^{\circ}$.

Hence,

$$
(\varphi-\theta)+90+\beta+(270-\gamma)=360
$$

Simplifying, we get

$$
\varphi+\beta=\theta+\gamma
$$

## Equation 2:

Given two parallel lines cut by a transversal, the consecutive interior angles are supplementarythey add up to $180^{\circ}$.
Hence,

$$
\alpha+\beta+\sigma=180 .
$$

Also, because angle of incidence equals angle of reflection, we see that

$$
\gamma+\sigma+\gamma=180
$$

Combining these two equations, we get

$$
\alpha+\beta=180-\sigma=2 \gamma .
$$

So, our second equation is

$$
\alpha+\beta=2 \gamma
$$



Equation 3:
The distance from the center of the Earth to eye level is

$$
r+h
$$

But, it is also

$$
D \sin (\varphi)+r \cos (\varphi)
$$

Hence,

$$
D \sin (\varphi)+r \cos (\varphi)=r+h
$$



## Equation 4:

The "horizontal" distance from the point of the horizon on the water to the vertical line from the center of the Earth to eye level can be computed two ways:

$$
D \cos (\varphi)
$$

and

$$
r \sin (\varphi)
$$

Hence,

$$
D \cos (\varphi)=r \sin (\varphi)
$$

## Equation 5:

Equation 5 is analogous to Equation 3, using the "point of reflection" in place of the "horizon".

$$
d \sin (\theta+\gamma)+r \cos (\theta)=r+h
$$



## Equation 6:

Equation 6 is analogous to Equation 4 in the same way.


$$
d \cos (\theta+\gamma)=r \sin (\theta)
$$

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...
Use (2) to solve for $\gamma$.

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...
Use (2) to solve for $\gamma$.
Solve (4) for $D$ and then substitute in for $D$ in (3).

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...
Use (2) to solve for $\gamma$.
Solve (4) for $D$ and then substitute in for $D$ in (3).
Solve (6) for $d$ and then substitute in for $d$ in (5).

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...
Use (2) to solve for $\gamma$.
Solve (4) for $D$ and then substitute in for $D$ in (3).
Solve (6) for $d$ and then substitute in for $d$ in (5). Use (1) to change $\theta+\gamma$ to $\varphi+\beta$ in (5) and (6).

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma  \tag{1}\\
\alpha+\beta & =2 \gamma  \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h  \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi)  \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h  \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) \tag{6}
\end{align*}
$$

Not hard to solve...
Use (2) to solve for $\gamma$.
Solve (4) for $D$ and then substitute in for $D$ in (3).
Solve (6) for $d$ and then substitute in for $d$ in (5). Use (1) to change $\theta+\gamma$ to $\varphi+\beta$ in (5) and (6).
And so on...

