Camera/Telescope Details

Aperture: $D=10$ inches $=254 \mathrm{~mm}$

Wavelength: $\lambda \approx 5080$ Angstroms $=508 \mathrm{~nm}=0.508$ microns $=0.000508 \mathrm{~mm}$
FWHM $=1.22 \frac{\lambda}{D}=1.22 \frac{0.000508}{254}=0.00000244$ radians $=0.503$ arcseconds
Focal Length: $f=90$ inches $=2286 \mathrm{~mm}$
FWHM in microns $=0.00000244$ radians $\times 2286 \mathrm{~mm} \times 1000$ microns $/ \mathrm{mm}=$ 5.58 microns

Pixel Size: 6.4 microns/pixel
FWHM in pixels: $5.58 / 6.4=0.87$ pixels

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae. The RR Lyrae type variable stars in M13 sit on the so-called horizontal branch of the HR diagram.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae. The RR Lyrae type variable stars in M13 sit on the so-called horizontal branch of the HR diagram. As we can see, the RR-Lyrae type variable stars in M13 are about 7 magnitudes fainter than RR-Lyrae itself.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae. The RR Lyrae type variable stars in M13 sit on the so-called horizontal branch of the HR diagram. As we can see, the RR-Lyrae type variable stars in M13 are about 7 magnitudes fainter than RR-Lyrae itself. From this magnitude difference, we can estimate how much further away M13 is than RR-Lyrae: $\sqrt{10^{7 / 2.5}} \approx 25$.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae. The RR Lyrae type variable stars in M13 sit on the so-called horizontal branch of the HR diagram. As we can see, the RR-Lyrae type variable stars in M13 are about 7 magnitudes fainter than RR-Lyrae itself. From this magnitude difference, we can estimate how much further away M13 is than RR-Lyrae: $\sqrt{10^{7 / 2.5}} \approx 25$. Finally, given that RR-Lyrae is 860 lightyears away, we get that M13 is about $25 \times 860 \approx 21,500$ lightyears away.

Measuring Distances: RR-Lyrae and M13

Assuming that the distance to RR-Lyrae is known, we can overlay an image of RR-Lyrae on an image of M13 to estimate the distance to the cluster. The two data points brighter than magnitude 8 are the two instances of RR-Lyrae. The RR Lyrae type variable stars in M13 sit on the so-called horizontal branch of the HR diagram. As we can see, the RR-Lyrae type variable stars in M13 are about 7 magnitudes fainter than RR-Lyrae itself. From this magnitude difference, we can estimate how much further away M13 is than RR-Lyrae: $\sqrt{10^{7 / 2.5}} \approx 25$. Finally, given that RR-Lyrae is 860 lightyears away, we get that M13 is about $25 \times 860 \approx 21,500$ lightyears away. This is not far from the correct answer of 22,200 lightyears.

M3/M13 Comparison: Here's M3

M3/M13 Comparison: Here's M13

M3/M13 Comparison

Hertzsprung-Russell Diagram for M3 and M13

M3/M13 Comparison

Click here to download the Python code.
The fits files can be accessed here:
https://vanderbei.princeton.edu/FRS_131/python/fits_files/m3-RGB.fit
https://vanderbei.princeton.edu/FRS_131/python/fits_files/m13-RGB.fit
Here's the output from Python:

```
difference in brightness is about 0.7 magnitude
difference in flux = 10^(0.7/2.5) = 1.90546071796
relative distance factor = sqrt(flux) = 1.3803842646
```

From Wikipedia, we see that the true distances are:

```
M3 = 10.4 kpc and M13 = 6.8 kpc
true distance ratio = 10.4/6.8 = 1.52941176471
```

A Brief Step Back Toward Home

Earth "Passed" Mars in Oct. 2020

Mars
Oct. 18, 2020

Questions?

Moving Further Out

Robert J. Vanderbei
2023

Freshman Seminar 131

The 119 globular clusters within 50,000 LY of the galactic centre

My Questar

Hubble Space Telescope

Some More Slides...

Stars Have Various Colors

Here's a pair of binary stars...

Albireo...

ϵ-Bootes...

The Coathanger asterism...

Open Cluster NGC 7789 ...

Hertzsprung-Russell Diagrams

$\mathrm{R}_{\text {vei }} \mathrm{O}_{\text {rangse }} \mathrm{Y}_{\text {ellown }} \mathrm{G}_{\text {tren }} \mathrm{B}_{\text {nue }} \mathrm{N}_{\text {nisiso }} \mathrm{V}_{\text {iolet }}$

LRGB

