The Earth Is Not Flat
An Analysis of a Sunset Photo

Can a photo of the sunset over Lake Michigan reveal the shape of our planet?
I will show you how we can...

measure something \textit{BIG} (the size of the Earth)

by first measuring something \textit{small} (my height), and measuring an \textit{angle} (off from a photograph)

and then doing some \textit{geometry}.
The Earth is a big sphere. How do we know?

Several ways. One way is to look at a Lunar eclipse...

Photo taken March 3, 2007, at about 8pm.
From a lunar eclipse, we can determine that the Earth is about 3 or 4 times larger than the Moon. But, how big is the Earth?

Next total lunar eclipse visible from the “east coast” is on January 20/21, 2019.
How big is the Earth? How can we find out?

First Method: Look it up on Wikipedia.

You’ll get the right answer (radius = 3,960 miles), but no satisfaction.

Second Method: Air travel.

I’ve flown to Bangkok Thailand.
It’s about a 17 hour flight.
It’s about halfway around the Earth.
Jets fly at about 600 mph.
So, the distance I flew is \(\text{about} \)

\[17 \text{ hours} \times 600 \text{ miles/hour} = 10,200 \text{ miles} \]

The circumference is then about 20,000 miles and radius is therefore about \(20,000/2\pi = 3,250 \text{ miles} \). This is just a rough estimate.
IS THERE AN EASIER WAY?
A picture I took of a sunset over Lake Michigan.
A close-up.

Using this picture, some geometry, and a little trigonometry, I was able to compute that the Earth’s radius is about 5000 miles.
A smooth lake is supposed to act like a mirror.
The Sun’s reflection should have looked something like this...
Or not!

What’s going on?
Lake Michigan is not a flat mirror.

Its surface is curved because the Earth is a sphere.

That’s why we can’t see the shore on the opposite side—it’s below the horizon!
Geometry — If the Earth Were Flat!

\[\alpha = \beta \] alternate interior angles are equal
\[\beta = \gamma \] alternate interior angles are equal
\[\gamma = \delta \] angle of incidence equals angle of reflection (from Physics!)
\[\delta = \epsilon \] alternate interior angles are equal

Therefore,
\[\alpha = \epsilon. \]

The reflection dips just as far below the horizon as the Sun stands above the horizon.
Geometry — The Earth Is Not Flat

Draw a picture.

Label everything of possible relevance.

Identify what we know:

\[\alpha \] Angle between horizon and top of Sun (measured from photo)

\[\beta \] Angle between horizon and “top” of Sun in reflection (measured)

\[h \] Height of “eye-level” above “water-level”.

Geometry — The Earth Is Not Flat

Everything else is the stuff we need to figure out:

- Three Angles:
 - γ: Angle of reflection off water.
 - θ: Angle between observer (me) and point of reflection.
 - φ: Angle between observer (me) and point of horizon.

Plus...
Geometry — The Earth Is Not Flat

- Three Distances (lengths):
 - d: Distance to point of reflection.
 - D: Distance to horizon.
 - r: Radius of Earth. \leftarrow This one is key!!!
The Sun is $1/2^\circ$ in diameter. Therefore, 1° equals $2 \times 317 = 634$ pixels.

And so,

$$\alpha = 69 \text{ pixels} \times \frac{1 \text{ degree}}{634 \text{ pixels}} = 0.1088 \text{ degrees}$$

and

$$\beta = 29 \text{ pixels} \times \frac{1 \text{ degree}}{634 \text{ pixels}} = 0.0457 \text{ degrees}.$$

And, we assume that eye level is

$$h = 7 \text{ feet}$$
What We Need To Figure Out:

- **Angles:**
 - γ Angle of reflection off water.
 - θ Angle between observer (me) and point of reflection.
 - φ Angle between observer (me) and point of horizon.

- **Distances (lengths):**
 - d Distance to point of reflection.
 - D Distance to horizon.
 - r Radius of Earth. \(\Leftarrow\) This one is key!!!

That’s SIX UNKNOWNS.

We need SIX (distinct!) EQUATIONS.
Equation 1:

The sum of the angles around a quadrilateral is 360°.

Hence,

\[(\varphi - \theta) + 90 + \beta + (270 - \gamma) = 360.\]

Simplifying, we get

\[\varphi + \beta = \theta + \gamma.\]
Equation 2:

Given two parallel lines cut by a transversal, the consecutive interior angles are supplementary—they add up to 180°.

Hence,

$$\alpha + \beta + \sigma = 180.$$

Also, because angle of incidence equals angle of reflection, we see that

$$\gamma + \sigma + \gamma = 180.$$

Combining these two equations, we get

$$\alpha + \beta = 180 - \sigma = 2\gamma.$$

So, our second equation is

$$\alpha + \beta = 2\gamma.$$
Equation 3:

The distance from the center of the Earth to eye level is

$$r + h.$$

But, it is also

$$D \sin(\varphi) + r \cos(\varphi).$$

Hence,

$$D \sin(\varphi) + r \cos(\varphi) = r + h.$$
Equation 4:

The “horizontal” distance from the point of the horizon on the water to the vertical line from the center of the Earth to eye level can be computed two ways:

\[D \cos(\varphi) \]

and

\[r \sin(\varphi). \]

Hence,

\[D \cos(\varphi) = r \sin(\varphi). \]
Equation 5:

Equation 5 is analogous to Equation 3, using the “point of reflection” in place of the “horizon”.

\[d \sin(\theta + \gamma) + r \cos(\theta) = r + h. \]
Equation 6:

Equation 6 is analogous to Equation 4 in the same way.

\[d \cos(\theta + \gamma) = r \sin(\theta). \]
Six Equations in Six Unknowns:

\[\varphi + \beta = \theta + \gamma \]
\[\alpha + \beta = 2\gamma \]
\[D \sin(\varphi) + r \cos(\varphi) = r + h \]
\[D \cos(\varphi) = r \sin(\varphi) \]
\[d \sin(\theta + \gamma) + r \cos(\theta) = r + h \]
\[d \cos(\theta + \gamma) = r \sin(\theta). \]

Not hard to solve.

Use (2) to solve for \(\gamma \).

Solve (4) for \(D \) and then substitute in for \(D \) in (3).

Solve (6) for \(d \) and then substitute in for \(d \) in (5).

And so on...
Three Equations in Three Unknowns:

\[\gamma = (\alpha + \beta)/2 \quad (2) \]
\[D = r \sin(\varphi)/\cos(\varphi) \quad (4) \]
\[d = r \sin(\theta)/\cos(\theta + \gamma) \quad (6) \]

\[\varphi - \theta = (\alpha - \beta)/2 \quad (1) \]
\[r = (r + h) \cos(\varphi) \quad (3) \]
\[r \cos(\gamma) = (r + h) \cos(\theta + \gamma) \quad (5) \]

Divide (3) and (5) by \(r + h \) and eliminate \(r \):
\[\cos(\varphi) = \cos(\theta + \gamma)/\cos(\gamma) = \cos(\varphi + \beta)/\cos(\gamma) \]

Expand the cosine of the sum, replace \(\sin(\varphi) \) with \(\sqrt{1 - \cos^2(\varphi)} \) and solve for \(\cos(\varphi) \):
\[\cos(\varphi) = \sin(\beta)/\sqrt{1 - 2 \cos(\beta) \cos(\gamma) + \cos^2(\gamma)} \]

Substitute this formula for \(\cos(\varphi) \) into (3) and solve for \(r \)...
Answer for \(r \) (radius of Earth) is:

\[
r = \frac{h}{\sqrt{1 - 2 \cos \beta \cos \gamma + \cos^2 \gamma}} - 1
\]

where

\[
\gamma = \frac{\alpha + \beta}{2}.
\]

Plugging in our values for \(\alpha \), \(\beta \), and \(h \), we get

\[r = 4,977 \text{ miles.}\]

Recall that the right answer is 3,960 miles.

Fixing \(\alpha \) and \(\beta \), the height \(h \) that corresponds to this answer is:

\[h = 7 \times \frac{3960}{4977} = 5.56 \text{ feet} = 5' 7''.
\]
Fix α. How does the ratio β/α vary with r...
In terms of pixels...
Morals:

- Always be mindful of units.
- Always draw a picture and label things.
- If there are six unknowns, you need six (distinct) equations.
- A picture need not be to scale; it can exaggerate angles, distances, etc.
Conclusion: ALGEBRA AND GEOMETRY ARE BOTH FUN AND USEFUL.