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INTHODUCTION

Prinaaémdw? interior-point {p-d bp) methods bave proven to be
suceessfol for both Hness programming (LP) and, more recently, for
mznta%«ﬁf;rmm& m*oyr:mm:zhg { P problems, Many of the technigues
mming have been extended to
In ?,asﬁ,«;iﬁ, interiorpoint ms‘:ih(wis currently appear o be the only
techmgques for SDF.

‘m, i

The derivation of witerier-point algorithms for SDP has followed
ciosely the Jessons learned from the applications i LP. eg, the
primal-cial mmmm of {3 ’,@Li‘st}gh 1HIS has led to specific r:hmu,a
for the form of the perturbed opltimalily conditions 1o which

¥ Y
Newton's meihw is applied. In this paper, we present a modified para-
digm: for deriving these methods both for LP and for SDP,

1. Using the opumality conditions from the dual log-barrier problem,
we obiain the systern of thra‘:& equations: primal feasihility; dual
feasibility; and perturbed complemeniary slackness, see Section 1.2
program (1.2} and Egs. (1.4a)-{1.4¢).

2. The linsar system for the Newtorn direction (N direction) for the
log-barrier problem is illconditioned but can be solved in a stable
way by using an augmented systens, Le., this direction fiself is mo
ii-conditioned and can be vsed successfully, However, the perturbed
complementary slackness condition (1.4¢) s nondinear. We modify
it to obtain a bilinear function and an equation on which Newton
type methods converge fastor,

3. We now find the Gauss-Newion search direction (OGN divection) to
T

the least squares problem for the resalting equationy equivalently
we fingd the least squares solution of the hnearived optimality
conditions.
This paradigm is similar to what 5 currently done, e.g., see [14]

Fxvn

-

teular, item 1 is unchanged. However, the modifications of

In par
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the optimality conditions in item 2 35 usually motivated by the
ill-conditioning. Here we emphasize that this iconditioning can be
avorded (see [34] Section 5) and that the true motivation shonid be to
reduce the nontinearity. The maln novelty of our paradigm s ftem 3,
where we use the least-squares solution to the overdetermined optimal-
ity condittons rather than a Newton direction on the svoumetrized
optimality conditions. This approach shows that the search divection
for SDP can be found from the optimality conditions just as 1s done
in LP. This is emphasized by the fact that the GN direction is always
well defined, and s in contrast to current approaches that modify the
optimality conditions to apply a Newton method to a square system,

1.1, Quiline

In this puper we introduce a family of search directions for primal-dual
interior-point methods for semidefinite programming. These directions
arise from a Gauss-Newton method applied to minimiziag the norm
of the over-determined svstemn of optimality conditions, rather than a
Newton method applied to symmetrized optimality conditions. In
addition, we compare several directions within the same interior-point
algorithm to assess the accuracy of the vesulting solutions and the
effectiveness of the new approach. We conclude that the Gauss-
MNewton direciion has interesting properties that warrant further study.

We complete this introdaction with some background on SDF m
Section 1.2, In Section 2 we define the GN direction and explore some
of its properties i Section 2.1.1.

Solution techniques are discussed in Section 3 while Section 3.1
contains the details of the elimination approuch used in our imple-
mentation of the GN direction.

Prelimanary numerical tests appear in Section 4. These tosts compare

various new and known search directions. We see that the GN ap-
proach is competitive in terms of the iteration count and the accuracy
of the solutions. In particular, it seems superior when applied to
certain badly scaled problems.

Remark J.1 In a detailed version of the present paper {34, Section 51
we discuss how Hl-conditioning arises from log-barrier problems in
NLP and how this can be aveided using an augmented systero.
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We conclude with several remarks and open guestions in Section 5.

1.2. Optimatity Conditicns

We now include the notation and background mformation on sppt
Let 87 denote the space of # x » symmetric m*—miww couipped with the
trace ioner product, (A, ) =trace A48 and let A0 {resp. A » )
denote p«cﬂ;iféw semidefiniteness {resp. posttive d“'i‘* niteness),
notes A B> 0, fe, 87 s equipped with the Lowner partial order, We
let §7 dmmﬁ the cone of symmetric positive semidefinite matrices; M”
denotes the set of »x n real matrices,

ST s an exlfension of linesr programming, denocie 1 LP, where
nonpegative variables are replaced by positve semidelinite matrices.

The standard primal semidefinite program is

7 = min {(C. X}
(PSDP) subject to AKX =5
X =0,

where the linear operator A4 8% - R™ is defined as
AKX, = (AL X),

and Ay i==1, .., »p1,are given symmetric matrices. To avoid trivialities,
we assume that g7 s finite valued. Thus the problem has a bounded

optinial value and a feasible solution. We also assume that the
matrices {4 Jm} oave Hnearty mda,!mndu“

Throughout ‘km paper, calligraphy letters (A 2 denote operators,
uppercase Latin lettors (X, Fy) denote matrices and lowsgrcase Latin
fetters {0, f,) denote vectors,

Problem PSP has generated much interest. One roason is that

.

there are many diverse applications: in discrete opfimization see ¢
13,21, 495 in engineering see e, (11, 631, for matrix completions see

k]
e.g. [26, 1] Another reason for rhe interest is that SDPs can be solved

efficientlv using interior-point methods. More applications and evid-
ence of the current high level of activity can be found in the recent

'Comprehensive notation is available at URL: hitp://orion vwaterloo.ca/ "hwolkow/
henry/software/psd_toold/sdpnotation.d/notation.ps
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theses: [2,47,23,44,27,68,33,28, 36}, and in the recent hooks and
notes 166, 10,41, 65, 58, 64, 431,

We now follow the p-d ip approach developed in [24), We follow
the usual derivation of p-d -p methods in LP and first introduce the
associated log-darrier probiem for the dual 8DP

max by
(DSDF) subject to Ay +Z = O (1.1
£ 0,

where A" denotes the adjoint operator, A"y = % wiA;. The dual barrier

problem is:
max h'y 4+ wlog detZ
(DBRP) subjectto Ay +Z = ]

where pis a positive real nurober called the bareier paramerer.
For each p > 0, there I8 a corresponding Lagrangian:

LX, 9,2y = by + plog detZ + (X, (T~ Z ~ A"y)). {1.%

With X, 7,0, the first-order optimality conditions for the saddle
point of this Lagrangian are obtained by differentiation:

Uyl = C =7~ Ay =0 (1.4a)
Vol =b— AX) =0 (1.4b)
Vol = ~X + pZ " = 0. {1.4c)

There exists a unique solution (X, . Z, } to ﬂww optimality condi-

tions. The one-paramster family {{(X,, v, 2.0 U< p} is called the

central trajeciory or the a‘crma‘ path, (,xwm 4 point (X, y, 72}

the central trajectory it is easy Lo determine s associated p value
sing (1.4¢)

(1.3

} B

We note that if the point 15 a feasible solution of the primal and the
dual problem, then (7, X) is the gap between the primal and the dual
objective value.
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For future reference, we express the ceatral path equations as

e Ay
: ( b= »‘g ,‘U \\ (1.6
X /

The eguations correspond tor dual feasibility, primal feasibility, aund
complementary slackness, respectively, The solution §¥ to F, (w- 0
satisfies the Karush-Kuhn-Tucker conditions (1.4) and is the (w{m mal
solution to the barrier problem. Path-following Interior-point meth-
ods approximaiely follow this trajectory for decreasing values of the
parameter g,

1.3, Bifimear Complementarily and Symmeirization

Sice the objective of a path-followmg algorithm is to find an
approximate solution of F, =10, o natural approach is to use a Newton
step. But the complemeniarity equation is highly nonlinear, gspecially
near the zero where 0 will be unk deficient. In LP {which can be
vicwed 2s a special case of SDP where all matrices are diagonal) the
obvious solution has been to fransform (1.4¢) into the bilinear form

ZX o pad = (. (1.7
The resulting function s less nonlinear since it iy bilinear. Such
modifications can waprove the rate of convergence, see e.g. [8, 20, 461,
and are the basis behind the suceess of algorithms for frust-region
subproblenis, see e.p. {46, 58, 51, 39].

Many of the algorithms from LP can be extended to SDP and retain
many of their nice properties. (See e.g., the books on interior-point
methods: by Nesterov and Nemix"ovsky [41L by Wright [45] by Ye
[66); edited by Terlaky {58 and the handbook on SDP [64])

However, there are several subtile differences with LP,

o

o One interesting diffevence 18 that duality gaps can exist for SDP i
the absence of strictly fersible solutions (Slater’s constramt gualif-
cation). This means that strong duoality can fail, fe. the primal
or dual may not be altained and/or there is a nonvera duality gap
between the primal and dual optimal values. However, feasible
mterior-point methods uswally assume strictly feasible soluhons, so



THE GAUSS-NEWTON DIRECTION IN SDP 7

we will not dwell on that here. (See e.p. [48) for a discussion on
strong duality and [45] for the generic properties.)

s Another difference is that strict complementarity may fail at the
optimum, f.e, there may be no optimal priral-dual pair for which
X+2Z s full rank. (See ep. [5,32) for a discussion on strict
complementarity and [45] for the generic properties.)

e Finally, the difference we focus on is that the bilinear form of the
complementarity Eq. (1.7), while it is equivalent in the LP case to
the original Eqg. (1.4¢), prevents a Newton step in the SDP case,

A Newton step is not possible because replacing the third equation
of #,=0by (1. 7y maps §" % R” » §"into §" x B” » M”. The solution
adopted by most interior-point algorithms is to neglect the skew-

syounetric part of the product ZX by means of a symmetrization

operator
. i " e
H{M) v (M4 M, {18}

10 obtain
ZX A X2 2pf = 0, (1.9

As written sbove (1.9), the complementarity equation now maps 8"
into $" and a Newton step is possible. This formulation is precisely
used by Alizadeh, Haeberly and Overton [6] but, in a very real sense,
it is used by all popular interior-point algorithms, This is because all
of the Monteiro-Zhang famuily of directions [38] can be expressed as
the AHO direction obtained from the perturbed and symmetrized
optimality conditions of an equivalent, scaled problem {see [S9]).

min

(Scaled — PSOPY subject to

where
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for various values of P, which is then scaled back via

dX dy, 42y == (F PP x i"a”P‘
boothe MK M. direction, [24, 32, 36, corresponds to £=2 Y this s

equivalent to syrometrizing 44 after solving the linear syg‘mm with
dX treated as a general matrix;

2. the dual H. K. M direction corresponds to Pe= X7,

3. the NT direction, {61}, corresponds to }’-u: ‘{, where & s the
unique matrix such that D=0ZG=6""XG " is a diagonal
matrix.

{(Bee E\., 59, 64 for derivations of various Newton directions.)

The various scalings are not without effect on the resulttng direc
rons, Paun guarmm»m certain pmpv ries that we will not discuss here,
Cur intent is fo hughlight the archetypical nature of the bilinear form
of the ca‘smp'vm;wmam/ gquation and of the resulting symmetrization,

O course, practical algorithrs are not necessarily mnplemented vig
scalings (See 2.p., the softw

ware packages [60, 19, 12, 41) scalings simply
provide 2 onifying view whic h underlines the practical importance of
the ssymim:ti‘iw &Mn in Hm current practice where a “sguare” system is
used {see |50, 24, 36, 32, 38,37, 6, 67,61, 341); it also serves to introduce
what 13 trnly nmf@l i our zng)mm:‘n

2. OVER-DETERMINED OPTIMALITY
COMDITIONS

We start fromm the bilinear form of the complementarity conditicns

ZX -yl =0, (211
and recall that the symmetrization ZX-+ X220k =0 was introduced

because of the insistence on a MNewton step. Is there an alternative

approach to the solution of (2.11)7
Weo now look at {2.11) as an operator mapping the symmetric matrix
space 5%« 87 to the space of matrices M”. With this in mind, we see

that the complete ser of pcrmré‘wd optimality conditions form an over-
determnined system of nonlinear equations. The standard approach,
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eg. [131 to an over-determined nonlinear system 15 to solve an
eguivalont least sguares problem, e, no symmetrization is nesded,
We now explore this possibility for possible advantages.

ence, the complete system we are trying to solve s

I o AT Fo
(E,Z'f"?”{\g} - (}?/]Vﬂ (‘:X .Y, Z} = b o ‘/‘“X) ozl ;’/? E oz 0>
LA e ;«’} £ vc .
(2.12)

where £, is defined in (1.6), $z 8" xR"x 88" R" x M,

eft by Z) and () denotes the adjoint operator. In contrast fo (1.6},
we are solving an over-determined but less nonlinear system,

2.1. The G Direction

The classical approach to a system of nonlinear equations F{s) =0
i3 the Gauss-MNewton method: minimize the sum of sguares of the
sguations and use an approximation to the Newton search ditection,
the OGN direction. In more detail, replace Fs} =0 by

5

min { L A (8), F(x})} == min{f (s}

A

At some flerate s, express the gquadratic approximation of /by

fomst

)+ (M (se)d) + 5 (F (s)d. ),

[a]

where the second derivative f"{s;) is composed of first-order terms
({F'(s), F'{zy)yy and of second-order terms ({(F"(sp). Fsp)y). The
Newton direction to minimize f is defined by /7 (sp)d= —f {5,). The
Gauss-Newton approach approximates the direction by ignoring
the second-order terms of /7,

Under very mild assumptions, e.g., full column rank of the deri-
vative F', the Gauss-Newton method for solving nonlinear equations
enjoyvs interesting properties, see e.g. {13, 15, 17, 16], some of which we
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will show, as they apply to (212

1. 30 the optimal valoe of the least squares problem is 0, then we get
quadratic vonvergence asymptotically, In our case, if we assume
that the duality gap is O and that both primal and dual SDP are
sttained, then there s a solution for the optimality conditions
which means that the least squares problem does indeed have w
{uttained) minimum value of © for cach p > 0.

2, The ON divection always exists. Thus there are no problems
with existence as there are for some scarch divections used in the
Hierature, see 2.g, [37]. In fact, one can apply the Gauss-Newton
approach to the scaled problems used o define other dirgctions
{1101 and thas resolve the question of existence. This s already the
object of some research [291 In this sense we view the Gauss-
Newton directions as a whole family even though we restrict our
attention here te the unscaled problem.

3. The direction guarantees descent for the objective function of the
least sguares problem. We therefore have a merit function to
monitor progress. {Though it is not a true potential function, see
[40, page 513 This aspect, as well as the implementation details
related to step-length are the object of current research.

4. The direction is scale invariant under affine transformation of
the space and also under orthogonal transformation of the problen
dat:

5. The search direction {s found using the same matrix cquations as
for LB, with the exception that a least squares solution is used.

With this motivation, we now look at the nonlinear least syuares
problem

¥
P mm Fuls) e 5 {0 F(a), 0¥ (8}, {243

where the Frobenius tmner product is used for elements of 8" and the
standard Eoclidean inner product is used for elements of ®™ The
optimal value v}, is called the residual.

Simce the GN direction 15 formed by dropping the second order
terms of the Hessian of £, from the Newton equation ;f” (el = ~ f (5],
it is enlightening to consider the importance of the droppuﬂ ze.nm; in
cur application,
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Recall that Foe=FLX, Zy=2X-ul. The dropped second order
terms therefore are (F.(X,Z), FI(X, Z)(-,-}). If we denote the changes

Bl LN

n 7, X as d7, dX respectively, then
(Z 4 dEVWX + dX0 — pd = ZX - pf -+ ZdX - dX2 - d7dX.
The curvature in this direction is therefore
UFX e pdy, d2edX .

The second order terms that are dropped from the Newton direction
to get the GN direction are rather simple and shmilar to the LP case,

gl 0 (ZX — pd) |
T2 {2x - ) o

This matriz is indefinite and can caunse problems if inchuded in the
approximate Hessian, Note that the residual r,, = 0 in our case, which
implies that the mairix of second derivatives is 0 at the optimum in
{2.13). Thus the errov is very small near the central path.

Finding the GN direction is therefore equivalent to solving the
normal equations

Ui‘f’:z!'”}x)w}*{“{’KF;:)‘{d-") = “‘"‘:5‘;&2%4,}'}N(‘I}Z’F‘u)f UM}

which s equivalent to finding the least sguares solution of the over-
determined system

{i@fﬁzﬁ",ﬁ:)f(a{\‘} = Pyl (2.15)

Oue popular method for solving the above system is to solve (2.13)
using a sparse QR decomposition. (See [9, 571 While the Newion
direction for the least squares problem is solved from the system

{*{(i‘l’z]’}g‘}})w((ﬁzf%), B fv{\} (!f.&'j} =S —-“((‘I?;;;F )f}m{(i7;F¢‘} (2.1 (}}

7 \

which cannot exploit the normal eguations. Moreover, the addition of
the operator H introduces negative cigenvalues and so the Newton
divection may not point to the minimurm,

With the above justification we now express the defining equations
of the Gauss-Newton direction. We use operator notation because that
vigwpoint suggested the approach. The over-determined linear system
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we are solving is:

E{dx) = A"\/(k";’::j e (;‘{X ““““ ,U,}V}ﬂ {:2 ;7‘.’3)
where the operators 2,4 are defined as
ZGT e M7 B s ZM) and 0 B -0 MY

XM = MX.

Sometimes an equivalent matrix formulation 18 ouseful, especially
since it highlights that the fterates never leave the space of symunetric
matrices. That is, we solve (2.17) for dX, d7 symmetric matrices. There
is no symmetrizanon of the equations and neither is there a symmetri-
zation of the resulting solution.

AT
o0
0 (oX)

e R Wyt
A = jsvec(d ). .. svec{An)],
by s 3\V~:€C{‘1‘YT}’
a7 e SV@C{@Z}%

N

= osvec(Fy ),

Fovss avec({F.),

where svee- ) 8R4 stacks, columm by column, the upper triangle
of 4 symmetric matrix into a vector of size H{m)==(n{n+ 1)/2) while
multiplying the off-diagonal elements by +/2 o maintain distances.
The corresponding avec(): M — ®* stacks the column of any matrix
into a vector. The binary operator @: 8" x §" — M” ¥ is what we
will call the asymmetric Kronecker product, defined from the identity
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(7S]

The above system {218} is very sparse and most of the terms do not
change at cach iteration. We have to exploit this fact as is done in
linear programming where block elimination is used.

241, Propevtivs of the Gauss-Newron Direction

We assume that the operator A4 i3 onfo, Le. the matrices 4, are
linearly independent or, equivalently, 4" is one- one or full column
rank. We first see that the Gauss-Newton direction exists and is well-
defined without any other assomptions. In particular, we do not
require 8 neighborhood around the central path.

TaroweM 2.1 Suppose that both X and Z are positive definite. Then the
linear operator of the overdetermined sysiem (23T is full rank.

Proof Suppose that (dX, dy, 42) solves {2.17) with right hand side 0.

Then dZ = —A"(dv). Therefore, A{dX) = 0 and
ZAXX T = A(dy) L dX. (2.19)

O trace (— A" (dv)dX ) s= trace(ZdX X~ dX) = 12 Pdo VL (2.20)
e, necessarily dX = 0. This means that both dy and 47 are § as well.
B

However, to guarantee full rank of the Jacobian at the optimum,
we need to assume that the primal and doal optima are both unigue.
This is equivalent to primal and deal non-degeneracy as defined and
ased in [5, 6] and shown to be generic, see also |53, 45].

Tugonem 2.2 Suppose that (X, v, 2y are a unigue optimal primal and
dual solution {equivalently primal and dual non-degenerate) of PSDF. In
addition, suppose that strict complementarity holds, i.e., X+ 2 » Q. Then
0 i the unique sohution of the system (237y at =0,

Proof Suppose that {dX, dyv,dZ) solves {2.17). Then dX, dZ are
symmetric since we solve this system in the symmetric matrix space
and therefore (dX, dy, d2) also solves the symmetrized system
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e

The resull in {6, Theorem 1] implies that the Jacoblan corresponding
to the symretrized system is nonsingular and so  necessarily
(X, dy, dZy=1.

We can provide a self~contained proof using the approach above in
Theorem 2.1, fe, f WedX and § = A"(dv), then ZW + 35X = 0= 2X
Sioce & and X commute, we can assume that they are dingonal,
Strct coplementarty and uniquencess imply that both ¥ and W are O,

]

This, w combination with Theoram 2.1 above, st
not run into Hll-conditioning difficulties. To pursue this idea, we tan
compare the singular values of the GN Jacobian 1o those of the
ABO Jacobian, known to be the best-conditioned of the symwetric
directions,

Consider this equivalem form of the over-determined system (2.17)

wggest that we will

ANy + di = (A" (y) -+ Z ~ C), (2.21a)
A(dX) = —(A(X) — b), (2.215)
H(ZdX + dZX) = —H{ZX ~ 1l (2.21¢)

K(ZdX + d7X) = ~K(ZX — uf), (2.21d)

where
N i, " . U
H{MY = MM (symmetric parth; (222}
b
. Lo f . \ o
(M) e 5 M - M, (skew-symmetric part) {(2.23)

Note that the first three Bqg. (2.21a)~(2.21c) correspond to the sym-
metrized {(or AHO) system. Corresponding 1o the matrix formulation
(2.18) we can write

(2.24)

i
F}"fj7

for some permutation P, and where J,, is the Jacobian of the Gauss-
Newton system, J,==Jy, is the Jacobian of the symmetric (AHO)
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system and Jy ig the part of Jg, corresponding to the skew-symmetric
component of the complementarity equation. To stmplify the notation
later, let

wi {{(n) -+ m + in), (2.25)
= t(n) 4 m b A (2.26}
poms i - B f{n) ot 1) (2.27}

and note that £, 15 (o), Jyis (B x Ay, Jgis {r i), Also let of4)
b the %i"muiar Ve Z‘ ues of matrix 4 in aon-increasing order. With this
notation, from (2.24), we obtain the following interlacing relation for
the wﬁp”}'lr values,

Turorem 2.3 The singular vadues of Jy, and of Jy, are reloted by
Jl\(*’w} “’f 472 (,~L‘r§u,w} N’ Tk gin i,}(*{g’m}v f)!‘ i ) <

bt

FProof  Follows directly from Corollary 3.1.3 of [251
We can also bound the largest singular value

"

Tuporam 2.4 The larges: wnum’ur value M “the Goauss-Newiton Jacobian

ed by e {J o) “/ f‘\k«m;} e ,\J;{-)«

Progf With the above definitions of J,,, P, J,, and of Jg,

 (Jgn) == mi wlan)
v TPLY
= As{ [(PL) (P2) )
F\]k,\j/’é

o '\i {ji‘;y . *Ii J’k}

3 ! .i i """ [.v’ [AH"
Uikl + 1Tl
m A {:\!fJI&) + Ay (J(}:};J

TR ST
= o (J) + ot T

. .
Therefore o1 (J,,) < Aol
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sting consequences. First,

These results have at least two intes
directly from {2.24) we can see that whenover /7 and X commute,
in particular on the centeal path, the Gauss-Newton and the AHO
direction coincide. Second, i imphies that the Gouss-Mewion system
is no closer to singuiarity than the AHO system s (trictly further i€
not on the central path), This is interesting in view of the numerical
stability of the AHO direction compared to most members of the
Monteiro-Zhang farily, For a refation between the singularty of the

"

system and the accuracy of the resulting direction, see the very imier-

T}

sting papers of Gu {22} and of Toh {621 We beliove these propertie
explain the good behavior of the GN step for the badly scaled problems

described in Section 4.
The Gauss-Newton direction also enjoy

€

s two different invariance

S

i Gﬁ} ertive. First it i invariant under affine transformation of the

5. This 15 the classical meaning of scals-invariance of an
algorithm, (See fov example (18], Section 3.3 Note thay we do not
mnply that the function [w@ FAX, vy, 230 s hovariant, but only that the
direction used to minimize ,hm function is invanant,

fn the following the m;nw:im"z () indicates the Moore-Penrose
imverse {(See {71

m-

Daporem 2.5 The GN direction, the least-sguare solution to (215} wsed
o sodve pms amt (A8 Iy dnvariant under affine tromsformation of the

= e fo where Hois won-singular

Fany
4
~
o
N

The GN step in s-space, {rom current point »,, 18 given by

Se (fw/} u\f‘f ‘\71 ‘;T:(?)»,[ Lz(A';L\

/

, under the affine scaling # = Hs+ & we obtain that &, £ (5} =&
L o Tet 7 . .
{r—hY) == G{r) Eﬁs&rag the full rank property in Theoren 2.2,

ze that the GN siep in the r-space, from the current point r,
He -+ by, will be

e Hse 4 b ({"f'if'r”ﬂu (s

Nt s e -
,H, )x“(g)ﬁfé",;(&:})

Iy Viw B F, (5o )

A " ¢

= Hs, + h— H{{BgF (s,

s I!IWXH + h.
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The N step is therefore invariant under affine transformations of the
SPase. B

We should remark that this classical scale-invariance property of the
Cause-Newton step actually bolds for any nonlinear function with
full-rank lacobian. In our specilic case we can say more: the Causs-
MNewton direction is nvariant under orthoponal scaling of both the
tterates and the problem data. This 8 called Q-seale invarionee by
Todd [591

Tupovem 2.6 Let (dX, dy, dZ) be the Gauss-Newton diveciion obtained
Congsider the scaled primal-dual pair

ar fevate (X, v, £

s U TRy A ~
min{ (C, X)|AX = b, Xe §° Y, (2.28)

2.29)
= PXPY A, C (2.30

for some orthogonal P, Then the scaled vector {P‘u’ YPL e, PSP Y
the Gauss-Newton divection at the iterate (X, 7 /m‘ the scaled
problem.

Pronf The Gauss-Newion direction can be obtaimed fromt the normal

Fa. {2.14) since the Jacobian is full-rank. The normal equations for the
scaled problem are

(A A+ Z°ENdX) + (B X)d7) = — (A f, + ZF,), {2.31a)
AL dy) + Al (2310

B E XY + A () + (1 -
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mm tute the scaled vector (dX,dy, dZ) into the left-hand side of
(2.31c)

w‘,,

=S TZP T PAN P PXE

4 PXP' P 7P PAX P

o

! T} PUAr Yy P
po—< “
i , .
; {f’ AR P PR

gy pe poyred e L e
+ PXPIRPXE P AP

( -
cfz«/‘sf% A XZAR Y :“} Ay

[

= P Fy e F P

.y f{}vd o A FLX .j‘._)m‘;);
S

G {PTEPTPXP 4 PXPPUFL P
3 ,

o

et {}" .t%; }

Therefore {dX,dy,dZ) satisfies (2310} Similar computations show
that i also satisfies (2, %M ~{2.31h) and we can conclude that the

L8
CGauss-MNewton direction 5 O

ale invariant &

3, CONSTRAINED LEAST SQUARES

The efficient caloulation of our GN divection s stifl an open problem
This Bas to involve a clever Implementation of a QR algorithm, There-

fore, we prosent a wrmrm:'zc:d GN, denoted RGN, direction that is

easier to cajculate, see (3.34). The RGN direction still maintains most

of the properties of the GN direction.
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31, Basic Fiimination

To reduce the execution time of the least-sgquare solver, we can
algebraically eliminate some variables using block elimination. The
order of slimination is different from that used in LP or other SDP
codes, where dX is elfminated first from the linearived complementar-
ity condition. One advantage that we have is that we never invert #,

It is simplest to first force dual feasibility and eliminate dZ from
£7), which, we recall, is of size (#m)+m+n) x {Hn) - tm)). We

to obtain the (m+n°) % {#n)+m) reduced dual feasible systern

A0 1dx ] ~f
{ ol ;5 o (3.32)
L& —~XA" [ Ldy [ LFuX -~ F.]

The upper part of this eqguation is still sparse and can therefore be
treated separately once for all fterations. Moreover, since the back-
setve for 42 s a s of matrices it is imexpensive and exploits any
gparsity in A%

A smaller system, everything else being equal, is faster to solve than
a large one. In the absence of spectfic information about the structure
of the problem, we pursue this idea further since it i possible to
ehminate mors variables and obtain an even smaller system, For o
specific problem with known sparsity structure, maxcut for example, it
is possible to eliminate variables while maintaining sparsity. In the
general case we discuss here, the major bottleneck being the size of the
systern, we aim ab a reduction in size with little concern for sparsity.

We now consider the primal constraint operator A, which we write

a8
[ 41
A = {.ﬁi B, An 1

where the dp is a subset of size m % m of A4 that is casily invertible, We
now divide 2, 4, X and 47 in the same manner to obtain

Xy = — Ay — Ay AvdXy, (3.33)
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which we substitute back into the dual feasible system (3.32), to obtain
oo
the (i » 1{n)) system

Albeit more costly o setap and backsolve than (3.32), this systery, for
large dense pr‘mzueme; is faster to solve because the bottleneck is the
least square solve. Moreover, the rank results esteblished for the la
system still hold

Corortary 3.1 Theorems 2.0 and 2.2 hold with system (227Y replaced
by syatens {3.34),

Proof The proofs follow the same pattern as in the above mentioned

theorems. For example, at cach iteration we have

Al =0, Advy+di =0

/

and
ZAX 4+ dZX = 0.
Therefore we can apply {2.19) and (2.20). -

Remark 3.1 Another approach is to do elimination in the same veln
as iz doue in LP but preserving the least squares properties. This can
be done using the explicit stracture of the operators in the optimality
conditions, see [34, Section 3.2}

4, NUMERICAL TESTS

Corapartsons Between Directions

We first present some numertca! results comparing the constrained GN
directions 1o the well-known Alizadeh- Hacherly-Overton {6) (AHO),
Helmberg- Rendl-Vanderben-Wolkowicz  [241/Kojima-Shindoh-Hagw
[32PMonteiro [36] (HEM) and Nesterov-Todd {42] (NT) directions.
It was not our intention here to develop a completely new and efficient
algorithm but rather to 1solate and highlight the effects of the scarch
directions. All tests were performed in Matlab using the SDPT3 code
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[60} from Todd, Toh, Tutuncu. We modified the mainline of SDPT3
to allow further options, namely the GN and the constrained GN
directions. The logic relating to step lengths and the updating of the
centering parameters were untouched to allow a reasonable compar-
ison of the relative value of the GN directions.

The first comparison (Fig. 1) illustrates the decrease in both the
duality gap and in the ::ni%::w on random semidefinite programs.
The problem has size (=10, m=-15) and the algorithm used a
predictor-corrector approach on all directions. The restricted GN
a“_m,,noﬁg? seems numerically stable, and redoces the duality gap s
muich as the AHG direction in A&E: as many derations, typically one
more. We should sote bere that the GN divection performs in exactly
the same manner as the restricied GN on those problems, albeit more

P

stowly.

By the constrained GN direction, we mean ?a slimination of dy and

[ part of dX ?, reduce the sysiem size (o § x t{n)) by forcing the
m.:msa and dual feasibility ?ﬁz,;:z That is, we solved {(3.34). On
andom SDP, s the case in this instance, with onknown and dense
structure, th nmﬁmﬁaoa will perform well.

The graph shows that the restricted GN direction performs very well
on such problems in terms of the accuracy of the solutions. Tt does
cousistently as well or better than AHO.

The following (Figs. 2 and 3) are somewhat unfair tests meant to
nighlight the robustness of the GN directions with respect to the
scaling of the problem. Again, the bagic problem is randomly gen-
erated, but then the right-hand side is scaled after the initial point

FIGURE | Random semidefiniie program.
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choser. The problem therefore becomes difficult because the starting
point is badly centered. The restricted GN direction is again used.
Table T compares the number of iterations and the accuracy of the
solutions of the AHO and RGN directions on randorm problerus. The
columns represent, in order, the iteration count, primal feasibilit

£

AHO RGN

fter P feus D feas Gap Iter £ fear D feas Cap
b 4 Y 24016 15
4 14 10 fle- 16 16
4 K 10 16 159
G 4 i s - 1y
4 i e Lde o 16 16
& 4 i 2216 - 16




THE GAUSS-NEWTON DIRECTION (N 8D 23

TABLE H  Egoiparttioning problems with no slater point

AHG OGN
Size () P fear D feas Gap P feas D feas Gap
g §le—04  Zle—10 Sde-07 1Be—-06  TRe—-12  67e-07
10 ’/"‘% ~ 04 2810 lde-06 49e-07  2Je-12 Zde 07
it 2.0¢ - (4 ide- 08 B.6e 07 306 3.2e-- 11 8‘? - (7
12 G2 -4 Loe—09 2306 1506 Tade - 11 G — 07
] Goe 04 B.0e~09 Bde- 06 ATe-06 2% 11 §.8¢ (57
AHO RN
20 £.8e-04 i.2e-08 29e-08 2e-14 6. Te-11 9. ey
e~ ALON /R, du al feasibility (LA™ + Z — CI/ICH, and the
duality gap ({X, 2L additional digit of accuracy for the RGN

case 18 mmt likely xihﬁf to me better conditioning of the sysiem.

As far as work per Heration 15 concerned, the major cost of the
restricted GN divection invelves the solution of a linear least squares
problem of size e t{zn). This is in contrast to AHO, where the sys-
tern to solve is of size m, and i3 then followed by the solution
of & Lyapunov equation of order #(n). Therefore, for problems with
fow constraints, the RGN Herations are more costly and they become
competitive as m Imcrenses

The final comparison highlights ope the main strengths of the GN
directions: the numerical accuracy of the solution they provide. The
problems under consideration fail to have strictly feasible points in the
primal space, That is, the Slater condition fails. The primal constraint
force the dingonal elements of the solution to be all ones and the sum
of the elements to be zero, making thess problems &um.c{“imﬁy fairly
difficelt. The primal objective matrix is randomly chosen. Table I
displays feasibility and the gap of the AHO and of (JI\ directions on
some of these problems. Al stopping criteria were discarded {except
for a large maximurm iteration count) and the alporithms were left to
run to obtain the best possible solution given theiv respective search
directions.

. FUTURE DIRECTIONS

ALl the search directions of the Monteiro - Zhang family uvsed in
interior-point algorithms for semidefinite programmming can be derived
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a5 the AHO direction of a scaled problem. In this sense, the sy
metrization and the vesultivg AHO system s the basic direction
finding paradigm in currently popular algorit

In this paper we have introduced an alternative approach. fnstead of
projecting onto the symmetric spacs, we view the modified, perturbed
opiimality condittons as a nonlinear operator to which we apply the
Granss - Mewton method., The result is an over-determined sys
squations and a new family of directions based on the least-squares
solution of this system.

We have investigated some of the properties of the resulting
unscaled direction, which we call GN, as it compares to AHO and
have found that the OGN direciton is well-defined, coincides with the
standard direction in the LP case, coincides with AHC

S,

e oF

O on the central
path in the SDP case, and i3 invariant under orthogonal scaling of
the data and affine scaling of the space. Moreover, the conditioning of
the w%em of equations allows 4 numerically robust implementation,
as exhibited by ouwr preliminary experiments.

The current research aims at establishivg polytime convergence of
algorithms based on the OGN direction, uwmm,mmg the Me ot of
various scaling

-~

and reducing the computational cost while exploiting
sparsity, We are also considering different but x"s:%.amai §zzm:»§¢~; of direc-
tions, First, we are exploring the use of more Hessian information,
possibly within an indefinite trust-region framework and second, 1o

reduce the size of the GN sy %hm we have tied to climinates re-
dundant equations from the optimality conditions.

For, surprigingly, there are redundant nonlinesr equations in (2.12).
We can remove the lower triangular part from the nonlinear block to
get the equivalent system

T{EX — ) = 0, (5.

>4
G

d on
- ST

where the linear operator 7 M ignores the strictly lower

trianguiar part of the matrix, fe., the {7 components are

/ ) Wy
(T =4
Note T{M) = PMP- implies P (M)P = which shows that this

does not fall under the general wnmmrmﬂmn tmn‘zﬁ:wmk {1.8) of the
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Monteiro-Zhang family vet the resulting system is now square; the
domain and range space are the same. Also note that 7 is the
composition of two linear maps: first apply the simple coordinate
{orthogonal) linear projection onto the subspace of upper trianguiar
matrices i the space of »x # matrices; then apply the one-nne
mapping o the space of symmetric matrices formed by duplicating
the upper ta"\migadur part m the lower iriangular part. We have
TEEWY) = T{W), de., T is idempotent (2 pmjmnom In fact, i we
identify the upper triangnlar matrices with 87, then we can consider 7
28 orthogonal as well,

The modified oplimality conditions become

( b AXY | =0, (5.36)
TZX -~y /

This transformation does not introduce new nonhinearitics but does
guarantee that we map between the same spaces. In fact, and this s
the surprise, we can prove {see [34] Lemma 2.1) that we do not lose
information in the optimality conditions when we ounly counsider the
upper triangular parts.
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