
INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR
PROGRAMMING: ORDERINGS AND HIGHER-ORDER METHODS

DAVID F. SHANNO AND ROBERT J. VANDERBEI

Statistics and Operations Research
Princeton University

SOR-99-5

ABSTRACT. The paper extends prior work by the authors on LOQO, an interior point al-
gorithm for nonconvex nonlinear programming. The specific topics covered include primal
versus dual orderings and higher order methods, which attempt to useeach factorization
of the Hessian matrix more than once to improve computational efficiency. Results show
that unlike linear and convex quadratic programming, higher order corrections to the cen-
tral trajectory are not useful for nonconvex nonlinear programming, but that a variant of
Mehrotra’s predictor-corrector algorithm can definitely improve performance.

1. INTRODUCTION

This paper extends previous work of the authors [14] onLOQO, an interior point algorithm
for nonconvex nonlinear programming. The purpose of this section is to describe briefly the
problem to be solved and the basic algorithm of [14].

For notational simplicity, we consider here only the inequality constrained nonlinear pro-
gramming problem

minimize f (x)
subject to hi(x) ≥ 0, i = 1,2, . . . ,m,

(1)

wherex is a vector of dimensionn and f (x) and thehi(x) are assumed to be twice continu-
ously differentiable. This paradigm is sufficient to describe fully the concepts to be introduced
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in this paper. The extension of the algorithm to problems with equality constraints, simple
bounds, and range constraints is discussed in [14] and [13].

The interior point method of [14] adds slack variables to (1), transforming the problem to

minimize f (x)
subject to h(x)−w = 0,

w ≥ 0,
(2)

whereh(x) andw represent the vectorshi(x) andwi respectively. The nonnegativity con-
straints of (2) are then replaced with a logarithmic barrier term in the objective function, re-
sulting in the transformed problem

minimize f (x)− µ
m∑

i=1

lnwi

subject to h(x)−w = 0.

(3)

The Lagrangian for (3) is

Lµ(x, w, y) = f (x)− µ
m∑

i=1

ln(wi)− yT (h(x)−w),

and the first order conditions for a minimum are

∇x Lµ(x, w, y) = ∇ f (x)−∇h(x)T y = 0,
∇wLµ(x, w, y) = −µW−1e + y = 0,
∇y Lµ(x, w, y) = h(x)−w = 0,

(4)

whereW is a diagonal matrix whose diagonal elements are thewi , e is them-vector of all
ones, and∇h is the Jacobian matrix of the vectorh. Primal-dual methods modify the system
(4) by multiplying the second equation byW , resulting in the system

∇ f (x)− ∇h(x)T y = 0,

−µe+WY e = 0,(5)

h(x)−w = 0,

whereY is the diagonal matrix with diagonal elementsyi . The basic primal-dual interior point
method applies Newton’s method to attempt to solve the system (5), leading to the system of
equations  H(x, y) 0 −AT (x)

0 Y W
A(x) −I 0

 1x
1w

1y

 =
 −∇ f (x)+ AT (x)y

µe − WY e
−h(x)+w

(6)

for the Newton corrections1x, 1w, and1y, where

H(x, y) = ∇2 f (x)−
m∑

i=1

yi∇2hi(x)
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and

A(x) = ∇h(x).

This system is not symmetric, but is symmetrized by multiplying the first equation by−I
and the second equation by−W−1, leading to the system with which we will be concerned
throughout the remainder of the paper, which is given by −H(x, y) 0 AT (x)

0 −W−1Y −I
A(x) −I 0

 1x
1w

1y

 =
 σ

−γ
ρ

 ,(7)

where

σ = ∇ f (x)− AT (x)y,

γ = µW−1e − y,

ρ = w − h(x).

A small modification of (7) is solved at each iteration of the basicLOQO algorithm. The
modification comes from solving the second equation to eliminate1w, which is quite simple
since this equation contains only diagonal matrices. The vector1w is given by

1w = WY−1(γ −1y).

Substituting it into (7) yields the reduced KKT system[ −H(x, y) AT (x)
A(x) WY−1

] [
1x
1y

]
=
[

σ

ρ +WY−1γ

]
.(8)

Once the search directions have been determined, the algorithm proceeds iteratively, choos-
ing a step lengthα at each iteration and determining the new estimates to the optimal solution
by

x (k+1) = x (k) + α(k)1x (k),

y(k+1) = y(k) + α(k)1y(k),

w(k+1) = w(k) + α(k)1w(k).
The step lengthα is chosen both to assure thatw ≥ 0 is maintained and that the merit function

9β,µ(x, w) = f (x)− µ
m∑

i=1

ln(wi)+ β
2
‖ρ(x, w)‖2(9)

is sufficiently reduced. In [14], it is shown that at each iteration, there is aβ for which the
solution to (8) is a descent direction for the merit function (9) provided the matrixH(x, y) is
positive definite. To assure that this is the case, the algorithm modifiesH(x, y)with a diagonal
perturbation,

Ĥ(x, y) = H(x, y)+ λI,(10)
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whenever during the factorization of the reduced KKT matrix a diagonal element with the
wrong sign occurs. While conceptually the system solved byLOQO is the system (8), even
before the perturbationλ is added, the system is modified to[ −(H(x, y)+ En) AT (x)

A(x) Em

] [
1x
1y

]
=
[
81

82

]
,(11)

whereEn andEm are positive definite diagonal matrices which arise in the handling of simple
bounds, equality constraints, and the treatment of free variables. While this system is less
likely to have an indefinite matrixH(x, y)+ En, it can and often does become indefinite, and
so a diagonal perturbation is necessary. The derivation of the matricesEn andEm are given in
detail in [14] and [13].

While the solution of the system (11) seems straightforward, there are two approaches to
solving the system which are mathematically equivalent but lead to dramatically different
results in practice. These will be discussed in detail in the next section. Further, when using
interior point methods to solve linear programming problems, it has been noted that often the
major computational work at each iteration lies in forming and factoring the reduced KKT
matrix, and higher order methods are used to attempt to use each factorization more than
once (see, for example, [1], [10], [2], [7]). In nonlinear programming, the costs of forming
and factoring the reduced KKT matrix may well be much higher, as the matrix contains second
derivatives of the objective function and first and second derivatives of the constraint functions.
Thus it appears worthwhile to use each factorization to the greatest possible extent. This is
studied in a subsequent section. The final sections show that the algorithm can become stuck
at a nonoptimal point, which has very real implications for any future convergence analysis,
and conclude with a set of computational results that show that a carefully designed higher
order method based on Mehrotra’s predictor-corrector algorithm can enhance performance of
the basic algorithm.

2. PRIMAL AND DUAL ORDERINGS

The purpose of this section is to examine two mathematically equivalent methods for solv-
ing the system (8), which have radically different performances in practice. For simplicity, we
will rewrite (8) as [ −H AT

A WY−1

][
1x
1y

]
=
[

σ

ρ +WY−1γ

]
.(12)

There are two mathematically equivalent but conceptually different ways to solve the system
(12). The first uses the first equation to eliminate1x , yielding

1x = −H−1(σ − AT1y).(13)

Substituting (13) into (12) gives the system

(AH−1 AT + WY−1)1y = ρ +WY−1γ + AH−1σ.(14)
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Solving (14) gives

1y = (AH−1 AT + WY−1)−1(ρ +WY−1γ + AH−1σ).(15)

Substituting (15) into (13) gives

1x = −H−1σ + H−1 AT (AH−1 AT + WY−1)−1(ρ +WY−1γ + AH−1σ).

We refer to this method as theprimal method, as it solves first for the primal corrections.
The alternative way of solving (12) uses the second equation to eliminate1y, giving

1y = W−1Yρ + γ −W−1Y1x .(16)

Substituting (16) in the first equation gives

(H + AT W−1Y A)1x = AT (W−1Yρ + γ )− σ.(17)

As above, this gives

1x = (H + AT W−1Y A)−1(AT (W−1Yρ + γ )− σ)
and

1y = W−1Yρ + γ −W−1Y (H + AT W−1Y A)−1(AT (W−1Yρ + γ )− σ).
We refer to this method as thedual method. (The equivalence of the expressions given in the
primal and the dual method follows trivially from the Sherman-Morrison-Woodbury formula.)

The first significant difference between these two methods is in the sparsity of the matrices
factored by the two methods. For large sparse problems, it is desirable to keep the factorization
as sparse as possible. For interior point methods for linear programming, whereH is diagonal,
either method may be preferable for a given problem. WhenH is not diagonal, however,
even whenH is very sparse,H−1 is often very dense, and hence the resulting coefficient
matrix of (14) is very dense, with a dense factorization. If bothH and AT A have reasonable
sparsity patterns, however, the resulting factorization of the coefficient matrix in (17) can
be quite sparse. Unless otherwise directed,LOQO chooses between ordering the primal or
dual coefficient matrices to maximize sparsity in the factorization based on a heuristic which
estimates which of the two methods are likely to produce the greatest sparsity. For nonlinear
programming, it virtually always chooses the dual ordering.

While sparsity is an important consideration, especially on large problems, another issue
enters in when solving nonconvex nonlinear programming problems and it dictates that the
dual method should always be used on such problems. The issue arises from the way diagonal
perturbations are added to the matrixH whenever a zero or negative diagonal element is
encountered. The primal method first factorsH , and hence will always encounter zero or
negative diagonal elements whenH is indefinite. The dual method, however, only factors the
matrix H + AT W−1Y A. As W−1Y is a positive definite diagonal matrix, this matrix can well
be positive definite even whenH is indefinite, which leads to much more stable and efficient
algorithms.
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As an example, consider the nonconvex problem

minimize −x1x2

subject to x1 + 2x2 ≤ 4
x1, x2 ≥ 0.

This problem has a minimum atx1 = 2, x2 = 1. Let w1 andw2 be the slack variables
associated with the simple bounds, and letw3 be the slack associated with the linear constraint.
Let y1, y2, andy3 the corresponding dual variables. For this problem, the diagonal matrices
En andEm appearing in (11) are given by

En = Diag

(
y1

w1

y2

w2

)
and Em =

[
w3

y3

]
.

Hence, the coefficient matrix corresponding to (11) is
− y1

w1
−1 −1

−1 − y2

w2
−2

−1 −2
w3

y3

 ,
where clearly

H + En =


y1

w1
1

1
y2

w2

 .
For details of handling bounded variables see [13]. For the primal method,H + En is factored
first. Therefore, diagonal perturbations will be added whenever the ratio of theyi ’s to the
wi ’s becomes less than one. As neither bound is active at the optimum, these ratios quickly
approach zero. The dual algorithm, however, factors the matrix

−


y1

w1
+ y3

w3
1+ 2

y3

w3

1+ 2
y3

w3

y2

w2
+ 4

y3

w3

 ,
which will remain negative definite asy3/w3 goes to infinity as the optimum is approached, as
at the optimum,w3 = 0 andy3 is nonzero. For this problem, the dual ordering algorithm solves
to optimality in 10 iterations, and never perturbs the diagonal. In contrast, the primal algorithm
solves to optimality in 180 iterations. It first perturbs the diagonal on the third iteration and
then on every subsequent iteration. Thus for nonconvex problems, dual orderings appear to
be essential, and are the default inLOQO. As a final note of caution, however, on convex
problems it is possible that a primal ordering can produce far greater sparsity, depending on
H and A. On the problemstructure socp ([12]), LOQO solved with the primal ordering
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in 2 minutes 20 seconds, and in 96 minutes with the dual ordering. Thus the ordering should
be chosen with care, but if the problem is nonconvex, the dual always seems preferable.

3. HIGHER ORDER METHODS

Almost from the inception of serious study of interior point methods for linear program-
ming, the concept of using one factorization of the reduced KKT system several times in order
to improve efficiency has been a subject of interest [1]. The first method to gain wide popular
acceptance was Mehrotra’s predictor-corrector method [10]. While the method was developed
initially for linear programming, it proved easily adaptable to convex quadratic programming
[2], [13], and it is within this context that we will briefly describe the method here. The convex
quadratic programming problem we consider is

minimize
1

2
x T Qx + x T c

subject to Ax ≥ b.

Adding slacks as before, the problem becomes

minimize
1

2
x T Qx + x T c

subject to Ax −w ≥ b,
w ≥ 0.

The KKT conditions corresponding to (5) are

Qx + c − AT y = 0,(18)

−µe +WY e = 0,(19)

Ax − b− w = 0.(20)

The only nonlinearity in this system occurs in (19), in the productWY e. Instead of applying
Newton’s method to the system (18)-(20), we can derive the predictor-corrector by substituting
1x ,1w, and1y directly into the system of equations, giving

Q1x − AT1y = −Qx − c + AT y,(21)

Y1w+ W1y = µe −WY e −1W1Y e,(22)

A1x −1w = b− Ax + w,(23)

where1W and1Y are the diagonal matrices with diagonal elements1w and1y, respec-
tively. The system (21)-(23) is implicit, with1w and1y terms appearing on both sides of
(22). The predictor-corrector algorithm first solves the system

Q1̂x − AT 1̂y = −Qx − c + AT y,(24)

Y 1̂w +W1̂y = −WY e,(25)

A1̂x − 1̂w = b− Ax + w,(26)

then dynamically choosesµ depending on the maximum step size which the solution to (24)-
(26) can take to maintainw ≥ 0. Current values forµ1̂w, and1̂y are then substituted into
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the right hand side of (21)-(23), and the system is solved again to obtain the search direction.
This process can be repeated by at each subsequent step substituting the latest solution pair
1w, 1y into the right hand side of (21)-(23). Recent papers by Gondzio [7] and Jarre and
Wechs [9] indicate that computational efficiency can be improved by repeating this several
times, where the number of times is dependent on both the cost of the factorization relative to
a backsolve and on progress of the higher order terms toward a solution.

The effect of these higher order corrections is to attempt to move the approximate solution
closer to the central path, the path on which

WY e = µe

for each value ofµ. The central path has been essential theoretically in order to prove con-
vergence of algorithms, and as noted has improved computational performance for linear pro-
gramming. It would then seem attractive to replace (6) with H(x .y) 0 −AT (x)

0 Y W
A(x) −I 0

 1x
1w

1y

 =
 −∇ f (x)+ AT (x)y
µe −WY e −1W1Y e

−h(x)+w


and, without changing the coefficient matrix, attempt to iterate to a solution closer to the
central path. Unfortunately, for nonconvex problems, the central path need not exist. To see
this, consider the problem

minimize x − x2

subject to x ≥ 0.

This problem has a local minimum at 0 and a global minimum at infinity. The first order
conditions for the barrier problem associated with this problem are

1− 2x − µ
x
= 0,

which has the solution

x = 1±√1− 8µ

2
.

Clearly, there is no real solution forµ > 1
8. While this may seem contrived, it apparently

is very real, as we tried this higher order scheme on the Hock and Schittkowski test set [8],
where the algorithm regularly failed when the criterion for ending an iteration was to enter a
cone surrounding the central path. This may also explain some of the failures of the original
barrier method of Fiacco and McCormick [5].

In view of this, another way to attempt to use a factorization more than once was tried. Here
the reduced KKT matrix (8) was formed and factored using the dual ordering described in the
previous section. If the factorization determined thatH(x, y) was indefinite, an appropriate
diagonal perturbation (10) was found to assure that the matrix factored was positive definite.
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The resulting system Ĥ(x, y) 0 −AT (x)
0 Y W

A(x) −I 0

 1x
1w

1y

 =
 −∇ f (x)+ AT (x)y
µe − WY e −1W1Y e

−h(x)+w

(27)

was then considered as if it were the quadratic programming problem (21)-(23) and the stan-
dard quadratic programming predictor-corrector direction computed as described above. While
this direction is generally a very good direction for convex quadratic problems, this is certainly
not always the case for nonconvex nonlinear problems. It is shown in [14] that if the current
solution is feasible, the solution to (7) is always a descent direction for the merit function (9).
That need not be the case for the solution to (27). Thus if the problem is feasible and the
predictor-corrector direction is not a descent direction for the merit function, this seems to be
a clear indication to abandon the predictor-corrector in favor of the standard direction.

It is the usual case, however, that feasibility and optimality are achieved at the same time.
When the problem is infeasible, determining that the predictor-corrector direction is a poor
direction is more difficult. To see this, let1x ,1w, and1y be the predictor-corrector solution
to (27). The algorithm then tries to choose a step size that reduces the merit function, but
in order to do this it first tests whether the direction is a descent direction for9, and if not
increasesβ sufficiently to assure that the direction is a descent direction for9. Now9 may
be written

9β,µ(x, w) = bµ(x, w)+ β
2
‖ρ(x, w)‖2

where

bµ(x, w) = f (x)− µ
m∑

i=1

ln(wi)

is the classic barrier function for the problem. Thus

∇x9β,µ(x, w) = ∇x bµ(x, w)+ βAT (x)ρ(x, w)

and
∇w9β,µ(x, w) = ∇wbµ(x, w) − βρ(x, w).

Thus [ ∇x9β,µ
∇w9β,µ

]T [
1x
1w

]
= 1x T∇xbµ +1wT∇wbµ + β(A1x −1w)Tρ.(28)

But from the third equation of (27)

A1x −1w = −ρ,
so the final term in (28) becomes−β‖ρ‖2. Thus as long as the gradients of the barrier func-
tion and the step sizes remain bounded, if the problem is infeasible (ρ 6= 0) aβ can always be
found that ensures that the step direction is a descent direction for the merit function. We have
therefore developed a dual strategy to determine whether to use the predictor-corrector step or
the original step. Ifβ increases by a factor of 100 at any iteration, we resort to the original
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algorithm. If it does not, but we are reducing the step sizeα significantly, where in the compu-
tational results in the final section of the paper, significantly was three or more reductions on
any iteration, we also revert to the original algorithm. Once the predictor-corrector has been
abandoned, we do not retry it. This algorithm is admittedly ad hoc, and in the future we hope
to improve it significantly. Nonetheless, it shows significant gains over the original algorithm,
and lends credence to the hope for even greater future improvement.

4. AN ALGORITHMIC FAILURE

To date, no convergence theory is known for the algorithms studied in this paper. As noted
previously, convergence results for interior point methods for linear and convex quadratic pro-
gramming rely on adhering to the central path. As we have seen, this will not work for noncon-
vex problems, as the central path may not exist. In [4], the authors demonstrate convergence
to a KKT point for the merit function

90(x, w, y) = ‖∇ f (x)− AT (x)y‖2+ ‖WY e‖2+ ‖h(x)−w‖2.

This merit function has proved unsatisfactory in practice, as it does not discriminate between
local minima, maxima, and saddle points [11]. In proving convergence to a KKT point, how-
ever, they need the requirement that the coefficient matrix of (7) remain nonsingular. We now
show an example where the algorithm of this paper fails when this matrix becomes singular.
The problem is a pure root finding problem, and stated in the context of the paper, is

minimize 0

subject tox(x − 1)(x + 1)+ 6= 0.

This function has a single root atx = −2 and inflection points atx = ± 1√
3
. The Lagrangian

for this problem is

L(x, y) = y(x(x − 1)(x + 1)+ 6)

and the Newton system[
6xy 3x2 − 1

3x2 − 1 0

][
1x
1y

]
=
[ −y(3x2− 1)
−x(x − 1)(x + 1)− 6

]
.

The system is clearly singular at either inflection point, but cannot reduce the infeasibility in
the constraint. When run withLOQO, the algorithm converges to the correct solution for any
x (0) < − 1√

3
, goes to 1√

3
for −1√

3
< x (0) < 1√

3
, and behaves randomly between the two choices

for larger values ofx (0). Thus any convergence theory will have to address the problem of
singularities of the coefficient matrix.
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5. COMPUTATIONAL RESULTS

In [14], the basic algorithm described in the introductory section of this paper was tested
againstMINOS andLANCELOT, and shown to be competitive with these algorithms across a
spectrum of test problems. In this paper, we are interested primarily in how a higher order
method compares to the basic algorithm, and hence include comparative tests of just these two
algorithms. All of our runs were done usingLOQO with AMPL [6], which provides analytic
first and second partial derivatives. The tests were performed on a R4600 SGI workstation
with 160 Mbytes of real memory, 16Kbytes of data cache, and a 133 MHz clock. There are
three components to the stopping rule forLOQO: (i) primal feasibility, (ii) dual feasibility, and
(iii) lack of duality gap. The default rule declares a solution primal/dual feasible if the relative
infeasibility is less than1.0e-6 and declares the problem optimal if, in addition, there are 8
or more digits of agreement between the primal and dual objective functions.

Table 1 shows comparions forLOQO (version 4.03) run both with and without predictor-
corrector on the Hock and Schittkowski test set [8]. For these problems we only recorded
iteration counts. Times were not significant because all of these problems are very small and
solve very quickly. The iteration counts when predictor-corrector was turned off are different
from those reported in [14] due to numerous small corrections/modifications between the old
version 3.10 and the current version 4.03. The changes include usingAMPL’s presolve as a
default, not requiring the initial point to satisfy simple bounds as a default, and an improved
method for finding the perturbation parameterλ. As before, we omittedHS013 from the
test as it has no KKT point.LOQO reported that problemHS067 was dual infeasible with
both methods apparently due to a complicated embedded fixed point calculation. With the
predictor-corrector option turned off,LOQO failed to solveHS085 in the default 200 iterations.
Turning off AMPL’s presolve corrects this problem.

The total number of iterations with the predictor-corrector option off is 2787 whereas with
it on the total number is 2404. While individual problems can vary significantly, overall the
predictor-corrector method seems to do very well.

In addition to the Hock and Schittkowski test sets, we compared the two algorithms on
three models from the second author’s website [12] and 15 models from theCUTE [3] library
of test problems. Some of these problems are larger (and therefore more interesting). As the
problems get more difficult, the benefits of using the predictor-corrector method become more
apparent. The results are contained in the table 2.

While this work is still preliminary, and the test sets relatively small, the results give real
hope that the predictor-corrector algorithm can improve interior point methods for nonconvex
nonlinear programming significantly. Several comments are in order. On the problemAVION,
where predictor-corrector was far inferior to the standard method, the predictor-corrector
quickly found an infeasible super-optimal point, from which recovery of feasibility was slow.
This phenomenon was a common inefficiency of sequential quadratic programming algo-
rithms, and deserves further study in this context. Also, onSOSQP1, the predictor-corrector
method eliminated only two iterations, yet cut execution time in half. This improvement arose
from the fact that the standard method required extensive reductions in step size in order to
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without with without with without with
pred pred pred pred pred pred
corr corr corr corr corr corr

Name Iters Iters Name Iters Iters Name Iters Iters
hs001 33 30 hs040 9 7 hs079 9 8
hs002 19 14 hs041 16 19 hs080 9 9
hs003 11 11 hs042 10 8 hs081 20 17
hs004 8 7 hs043 11 10 hs083 16 15
hs005 10 9 hs044 20 20 hs084 14 18
hs006 11 9 hs045 23 32 hs085 200 64
hs007 14 26 hs046 21 20 hs086 14 11
hs008 9 9 hs047 21 20 hs087 24 19
hs009 10 8 hs048 8 8 hs088 22 22
hs010 15 13 hs049 24 22 hs089 26 40
hs011 13 10 hs050 16 14 hs090 27 25
hs012 10 8 hs051 8 8 hs091 29 23
hs014 11 9 hs052 8 8 hs092 23 20
hs015 24 21 hs053 12 12 hs093 13 11
hs016 18 20 hs054 33 33 hs095 15 11
hs017 27 26 hs055 11 17 hs096 18 38
hs018 18 14 hs056 17 23 hs097 30 19
hs019 17 19 hs057 17 19 hs098 35 19
hs020 24 14 hs059 22 26 hs099 24 19
hs021 12 12 hs060 18 10 hs100 11 10
hs022 9 8 hs061 11 9 hs101 163 28
hs023 18 14 hs062 13 14 hs102 51 33
hs024 13 35 hs063 10 15 hs103 29 24
hs025 27 29 hs064 27 18 hs104 14 10
hs026 15 17 hs065 17 13 hs105 17 21
hs027 55 23 hs066 14 10 hs106 21 25
hs028 8 8 hs067 138 136 hs107 113 46
hs029 10 10 hs068 58 103 hs108 20 25
hs030 9 9 hs069 16 17 hs109 78 96
hs031 13 10 hs070 27 16 hs110 11 17
hs032 23 11 hs071 13 11 hs111 17 24
hs033 12 10 hs072 23 21 hs112 19 11
hs034 16 10 hs073 21 12 hs113 16 11
hs035 10 8 hs074 18 19 hs114 27 20
hs036 15 16 hs075 19 20 hs116 126 157
hs037 11 17 hs076 11 8 hs117 19 17
hs038 44 43 hs077 13 12 hs118 15 15
hs039 15 20 hs078 9 9 hs119 32 20

TABLE 1. Iteration counts on Hock-Schittkowski problems.



INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING 13

Problem Source w/o pred corr w/ pred corr
Iters Time Iters Time

(secs) (secs)
structure4 rvdb 43 157.0 39 137.4
nb L2 besselreal rvdb 23 459.5 14 205.1
3.mod rvdb 35 11.0 20 6.4
hadamard (n=12) cute 13 5.8 10 4.6
hadamard (n=20) cute 13 17.8 10 13.8
avion cute 46 0.147 92 0.366
rk23 cute 12 0.011 10 0.010
eigenaco cute 27 2.23 18 1.76
eigenb2 (N=10) cute 20 1.73 27 3.46
eigenbco (N=10) cute 45 5.75 44 5.89
xplin cute 27 0.065 23 0.058
hager1 (N=1000) cute 15 5.47 10 2.81
harkerp2 (N=100) cute 37 2.45 25 1.69
msqrtals (P=10) cute 17 1.62 16 1.58
sawpath cute 108 19.3 44 5.2
sosqp1 cute 13 597.0 11 290.0
yao cute 16 6.66 11 4.65
zigzag (T=10) cute 46 0.143 50 0.182

TABLE 2. Iteration counts and times for larger problems. Numbers in paren-
theses represent settable parameters in the model.

assure that the merit function was reduced. With automatic differentiation, as provided by
AMPL, first and second derivative calculations can be very cheap compared to function evalua-
tions, so it is not necessarily always true that the time to compute and factor the reduced KKT
matrix will dominate execution time. Linear searches can be relatively very expensive.

In summary, much remains to be learned about fully efficient and stable implementations of
interior point methods for nonconvex nonlinear programming, but the progress to date is most
encouraging.
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