Solving Trajectory Optimization Problems as Large-Scale Nonlinear Programs

Robert Vanderbei

November 5, 2001
INFORMS Miami Beach

Operations Research and Financial Engineering, Princeton University
http://www.princeton.edu/~rvdb
1 Outline

- Celestial Mechanics
- Putting on an Uneven Green
- Goddard Rocket Problem
Celestial Mechanics—Periodic Orbits

- Find periodic orbits for the planar gravitational \(n \)-body problem.
- Minimize action:
 \[
 \int_{0}^{2\pi} (K(t) - P(t))dt,
 \]
 where \(K(t) \) is kinetic energy,
 \[
 K(t) = \frac{1}{2} \sum_{i} \left(\dot{x}_{i}^{2}(t) + \dot{y}_{i}^{2}(t) \right),
 \]
 and \(P(t) \) is potential energy,
 \[
 P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_{i}(t) - x_{j}(t))^{2} + (y_{i}(t) - y_{j}(t))^{2}}},
 \]
 Subject to periodicity constraints:
 \[
 x_{i}(2\pi) = x_{i}(0), \quad y_{i}(2\pi) = y_{i}(0).
 \]
2 Celestial Mechanics—Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.

- Minimize action:
 \[
 \int_{0}^{2\pi} (K(t) - P(t))dt,
 \]

 where $K(t)$ is kinetic energy,

 \[
 K(t) = \frac{1}{2} \sum_{i} \left(\dot{x}_i^2(t) + \dot{y}_i^2(t) \right),
 \]

 and $P(t)$ is potential energy,

 \[
 P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2}}.
 \]

- Subject to periodicity constraints:

 \[
 x_i(2\pi) = x_i(0), \quad y_i(2\pi) = y_i(0).
 \]
Celestial Mechanics—Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.
- Minimize action:
 \[
 \int_0^{2\pi} (K(t) - P(t)) dt,
 \]
 where $K(t)$ is kinetic energy,
 \[
 K(t) = \frac{1}{2} \sum_i \left(\dot{x}_i^2(t) + \dot{y}_i^2(t) \right),
 \]
 and $P(t)$ is potential energy,
 \[
 P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2}}.
 \]
- Subject to periodicity constraints:
 \[
 x_i(2\pi) = x_i(0), \quad y_i(2\pi) = y_i(0).
 \]
2 Celestial Mechanics—Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.

- Minimize action:
 \[
 \int_0^{2\pi} (K(t) - P(t)) dt,
 \]

- where $K(t)$ is kinetic energy,
 \[
 K(t) = \frac{1}{2} \sum_i \left(\dot{x}_i^2(t) + \dot{y}_i^2(t) \right),
 \]

- and $P(t)$ is potential energy,
 \[
 P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2}}.
 \]

- Subject to periodicity constraints:
 \[
 x_i(2\pi) = x_i(0), \quad y_i(2\pi) = y_i(0).
 \]
Celestial Mechanics—Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.
- Minimize action:
 \[\int_0^{2\pi} (K(t) - P(t)) dt, \]
 where $K(t)$ is kinetic energy,
 \[K(t) = \frac{1}{2} \sum_i \left(\dot{x}_i^2(t) + \dot{y}_i^2(t) \right), \]
 and $P(t)$ is potential energy,
 \[P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2}}. \]
- Subject to periodicity constraints:
 \[x_i(2\pi) = x_i(0), \quad y_i(2\pi) = y_i(0). \]
2 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action:

$$\int_0^{2\pi} (K(t) - P(t))dt,$$

• where $K(t)$ is kinetic energy,

$$K(t) = \frac{1}{2} \sum_i \left(\dot{x}_i^2(t) + \dot{y}_i^2(t) \right),$$

• and $P(t)$ is potential energy,

$$P(t) = -\sum_{i<j} \frac{1}{\sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2}}.$$

• Subject to periodicity constraints:

$$x_i(2\pi) = x_i(0), \quad y_i(2\pi) = y_i(0).$$
3 Specific Example

Orbits.mod with $n = 3$ and $(0, 2\pi)$ discretized into a 160 pieces gives the following results:

- constraints 0
- variables 960
- time (secs)
 - LOQO 1.1
 - SNOPT 287 (no change for last 80% of iterations)
4 Putting on an Uneven Green

Given:

- \(z(x, y) \) elevation of the green.
- Starting position of the ball \((x_0, y_0)\).
- Position of hole \((x_f, y_f)\).
- Coefficient of friction \(\mu \).

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

- \(u(t) = (x(t), y(t), z(t)) \) — position as a function of time \(t \).
- \(v(t) = (v_x(t), v_y(t), v_z(t)) \) — velocity.
- \(a(t) = (a_x(t), a_y(t), a_z(t)) \) — acceleration.
- \(T \) — time at which ball arrives at hole.
4 Putting on an Uneven Green

Given:

• $z(x, y)$ elevation of the green.
• Starting position of the ball (x_0, y_0).
• Position of hole (x_f, y_f).
• Coefficient of friction μ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• $u(t) = (x(t), y(t), z(t))$—position as a function of time t.
• $v(t) = (v_x(t), v_y(t), v_z(t))$—velocity.
• $a(t) = (a_x(t), a_y(t), a_z(t))$—acceleration.
• T—time at which ball arrives at hole.
4 Putting on an Uneven Green

Given:

- $z(x, y)$ elevation of the green.
- Starting position of the ball (x_0, y_0).
- Position of hole (x_f, y_f).
- Coefficient of friction μ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

- $u(t) = (x(t), y(t), z(t))$—position as a function of time t.
- $v(t) = (v_x(t), v_y(t), v_z(t))$—velocity.
- $a(t) = (a_x(t), a_y(t), a_z(t))$—acceleration.
- T—time at which ball arrives at hole.
4 Putting on an Uneven Green

Given:

- $z(x, y)$ elevation of the green.
- Starting position of the ball (x_0, y_0).
- Position of hole (x_f, y_f).
- Coefficient of friction μ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

- $u(t) = (x(t), y(t), z(t))$—position as a function of time t.
- $v(t) = (v_x(t), v_y(t), v_z(t))$—velocity.
- $a(t) = (a_x(t), a_y(t), a_z(t))$—acceleration.
- T—time at which ball arrives at hole.
5 Putting—Two Approaches

- Problem can be formulated with two decision variables:
 \[v_x(0) \quad \text{and} \quad v_y(0) \]

 and two constraints:
 \[x(T) = x_f \quad \text{and} \quad y(T) = y_f. \]

 In this case, \(x(T), y(T) \), and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.

We advocate the second approach.
5 Putting—Two Approaches

- Problem can be formulated with two decision variables:
 \[v_x(0) \quad \text{and} \quad v_y(0) \]

 and two constraints:
 \[x(T) = x_f \quad \text{and} \quad y(T) = y_f. \]

 In this case, \(x(T), y(T) \), and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.

We advocate the second approach.
5 Putting—Two Approaches

- Problem can be formulated with two decision variables:

\[v_x(0) \quad \text{and} \quad v_y(0) \]

and two constraints:

\[x(T) = x_f \quad \text{and} \quad y(T) = y_f. \]

In this case, \(x(T) \), \(y(T) \), and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.

We advocate the second approach.
5 Putting—Two Approaches

- Problem can be formulated with two decision variables:

$$v_x(0) \quad \text{and} \quad v_y(0)$$

and two constraints:

$$x(T) = x_f \quad \text{and} \quad y(T) = y_f.$$

In this case, $x(T)$, $y(T)$, and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.

We advocate the second approach.
5 Putting—Two Approaches

- Problem can be formulated with two decision variables:

 \[v_x(0) \text{ and } v_y(0) \]

 and two constraints:

 \[x(T) = x_f \text{ and } y(T) = y_f. \]

 In this case, \(x(T), y(T), \) and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.

We advocate the second approach.
6 Putting—Continued

Objective:

\[\text{minimize } v_x(T)^2 + v_y(T)^2. \]

Constraints:

\[\begin{align*}
 v &= \dot{u} \\
 a &= \dot{v} \\
 ma &= N + F - mge_z \\
 u(0) &= u_0 \quad u(T) = u_f,
\end{align*} \]

where

- \(m \) is the mass of the golf ball.
- \(g \) is the acceleration due to gravity.
- \(e_z \) is a unit vector in the positive \(z \) direction.

and ...

6 Putting—Continued

Objective:

\[\text{minimize } v_x(T)^2 + v_y(T)^2. \]

Constraints:

\[\begin{align*}
 v &= \dot{u} \\
 a &= \dot{v} \\
 ma &= N + F - mge_z \\
 u(0) &= u_0 \\
 u(T) &= u_f,
\end{align*} \]

where

- \(m \) is the mass of the golf ball.
- \(g \) is the acceleration due to gravity.
- \(e_z \) is a unit vector in the positive \(z \) direction.

and ...
6 Putting—Continued

Objective:

\[
\text{minimize } v_x(T)^2 + v_y(T)^2.
\]

Constraints:

\[
v = \dot{u} \\
a = \dot{v} \\
ma = N + F - mge_z \\
u(0) = u_0 \quad u(T) = u_f,
\]

where

- \(m \) is the mass of the golf ball.
- \(g \) is the acceleration due to gravity.
- \(e_z \) is a unit vector in the positive \(z \) direction.

and ...
Putting—Continued

Objective:

\[
\text{minimize } v_x(T)^2 + v_y(T)^2.
\]

Constraints:

\[
\begin{align*}
v &= \dot{u} \\
a &= \dot{v} \\
ma &= N + F - mge_z \\
u(0) &= u_0 \quad u(T) = u_f,
\end{align*}
\]

where

- \(m \) is the mass of the golf ball.
- \(g \) is the acceleration due to gravity.
- \(e_z \) is a unit vector in the positive \(z \) direction.

and ...
7 Putting—Continued

- \(N = (N_x, N_y, N_z) \) is the normal force:

\[
N_z = m \frac{g - a_x(t) \frac{\partial z}{\partial x} - a_y(t) \frac{\partial z}{\partial y} + a_z(t)}{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1}
\]

\[
N_x = -\frac{\partial z}{\partial x} N_z
\]

\[
N_y = -\frac{\partial z}{\partial y} N_z.
\]

- \(F \) is the force due to friction:

\[
F = -\mu \||N|| \frac{v}{\|v\|}.
\]
\section*{Putting—Continued}

- $N = (N_x, N_y, N_z)$ is the normal force:

\[N_z = m \frac{g - a_x(t) \frac{\partial z}{\partial x} - a_y(t) \frac{\partial z}{\partial y} + a_z(t)}{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1} \]

\[N_x = -\frac{\partial z}{\partial x} N_z\]

\[N_y = -\frac{\partial z}{\partial y} N_z.\]

- F is the force due to friction:

\[F = -\mu ||N|| \frac{v}{||v||}.\]
\section*{7 Putting—Continued}

- \(N = (N_x, N_y, N_z)\) is the normal force:

\[
N_z = m \frac{g - a_x(t) \frac{\partial z}{\partial x} - a_y(t) \frac{\partial z}{\partial y} + a_z(t)}{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1}
\]

\[
N_x = -\frac{\partial z}{\partial x} N_z
\]

\[
N_y = -\frac{\partial z}{\partial y} N_z.
\]

- \(F\) is the force due to friction:

\[
F = -\mu ||N|| \frac{v}{||v||}.
\]
Putting—Specific Example

- Discretize continuous time into \(n = 200 \) discrete time points.
- Use finite differences to approximate the derivatives.

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Variables</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOQO</td>
<td>597</td>
<td>14.1</td>
</tr>
<tr>
<td>SNOPT</td>
<td>399</td>
<td>4.1</td>
</tr>
</tbody>
</table>
9 Goddard Rocket Problem

Objective:

\[\text{maximize } h(T); \]

Constraints:

\[
\begin{align*}
v &= \dot{h} \\
a &= \dot{v} \\
\theta &= -cm \\
a m &= (\theta - \sigma v^2 e^{-h/h_0}) - gm \\
0 &\leq \theta \leq \theta_{\text{max}} \\
m &\geq m_{\text{min}} \\
h(0) &= 0 \quad v(0) = 0 \quad m(0) = 3
\end{align*}
\]

where

- \(\theta = \text{Thrust, } m = \text{mass} \)
- \(\theta_{\text{max}}, g, \sigma, c, \text{ and } h_0 \) are given constants
- \(h, v, a, T_h, \text{ and } m \) are functions of time \(0 \leq t \leq T \).
9 Goddard Rocket Problem

Objective:

\[\text{maximize } h(T); \]

Constraints:

\[
\begin{align*}
v &= \dot{h} \\
a &= \dot{v} \\
\theta &= -cm \\
ma &= (\theta - \sigma v^2 e^{-h/h_0}) - gm \\
0 &\leq \theta \leq \theta_{\text{max}} \\
m &\geq m_{\text{min}} \\
h(0) &= 0 \\
v(0) &= 0 \\
m(0) &= 3
\end{align*}
\]

where

- \(\theta = \text{Thrust}, m = \text{mass} \)
- \(\theta_{\text{max}}, g, \sigma, c, \) and \(h_0 \) are given constants
- \(h, v, a, T_h, \) and \(m \) are functions of time \(0 \leq t \leq T \).
<table>
<thead>
<tr>
<th>Constraints</th>
<th>399</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>599</td>
</tr>
<tr>
<td>Time (secs)</td>
<td></td>
</tr>
<tr>
<td>LOQO</td>
<td>5.2</td>
</tr>
<tr>
<td>SNOPT (IL)</td>
<td></td>
</tr>
</tbody>
</table>