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Abstract We propose two approaches to solve large-scale compressed sensing problems. The

first approach uses the parametric simplex method to recover very sparse signals by taking

a small number of simplex pivots, while the second approach reformulates the problem us-

ing Kronecker products to achieve faster computation via a sparser problem formulation. In

particular, we focus on the computational aspects of these methods in compressed sensing.

For the first approach, if the true signal is very sparse and we initialize our solution to be

the zero vector, then a customized parametric simplex method usually takes a small number of

iterations to converge. Our numerical studies show that this approach is 10 times faster than

state-of-the-art methods for recovering very sparse signals.

The second approach can be used when the sensing matrix is the Kronecker product of

two smaller matrices. We show that the best-known sufficient condition for the Kronecker

compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the

corresponding condition if using the first approach. However, KCS can be formulated as a

linear program (LP) with a very sparse constraint matrix, whereas the first approach involves

a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem

The first author’s research is supported by ONR Award N00014-13-1-0093, the third author’s by NSF Grant

III–1116730, and the fourth author’s by NSF Grant DMS-1005539

Robert J. Vanderbei

Department of Ops. Res. and Fin. Eng., Princeton University, Princeton, NJ 08544.

Tel.: +609-258-2345

E-mail: rvdb@princeton.edu



2

representation, such as interior point methods (IPMs), are expected to have computational

advantages for the KCS problem. We numerically demonstrate that KCS combined with IPMs

is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as `1 `s and Mirror

Prox regardless of the sparsity level or problem size.

Keywords Linear programming · compressed sensing · parametric simplex method · sparse

signals · interior-point methods
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1 Introduction and Contribution Overview

Compressed sensing (CS) aims to recover a sparse signal from a small number of measurements.

The theoretical foundation of compressed sensing was first laid out by Donoho (2006) and

Candès et al. (2006) and can be traced further back to the sparse recovery work of Donoho

and Stark (1989); Donoho and Huo (2001); Donoho and Elad (2003). More recent progress in

the area of compressed sensing is summarized in Elad (2010) and Kutyniok (2012).

Let x∗ := (x∗1, . . . , x
∗
n)T ∈ Rn denote a signal to be recovered. We assume n is large and

x∗ is sparse (i.e., many entries of x∗ are zero). Let A be a given (or chosen) m × n matrix

with m < n. Let aij denote the (i, j)th element of A. The compressed sensing problem aims to

recover x∗ from the compressed, noise-free signal y := Ax∗ ∈ Rm.

Specifically, we wish to find the sparsest solution to an underdetermined linear system by

solving

min
x
‖x‖0 subject to Ax = y, (P0)

where ‖x‖0 :=
∑n
i=1 1(xi 6= 0). This problem is NP-hard because of the nonconvexity of the `0

pseudo-norm. To handle this challenge, Chen et al. (1998) proposed the basis pursuit approach

in which ‖x‖0 is replaced by ‖x‖1 :=
∑n
i=1 |xi| to obtain a convex optimization problem

min
x
‖x‖1 subject to Ax = y. (P1)

Donoho and Elad (2003) and Cohen et al. (2009) provide conditions under which the solutions

to Problems (P0) and (P1) are unique in their respective problems.

One key question is to understand what conditions guarantee that the solutions to (P0) and

(P1) are equal. Various sufficient conditions have been discovered. For example, letting A∗S
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denote the submatrix of A with columns indexed by a subset S ⊂ {1, . . . , n}, we say that A

has the k-restricted isometry property (k-RIP) with constant δk if for any S with cardinality

k,

(1− δk)‖v‖22 ≤ ‖A∗Sv‖22 ≤ (1 + δk)‖v‖22 for any v ∈ Rk, (1)

where ‖v‖2 :=
√∑n

j=1 v
2
j . We define δk(A) to be the smallest value of δk for which the matrix

A has the k-RIP property. This property was first introduced by Candès et al. (2006). Under

the assumption that k := ‖x∗‖0 � n and A satisfies the k-RIP condition, Cai and Zhang

(2012) prove that whenever δk(A) < 1/3, the solutions to (P0) and (P1) are the same. The

works in Donoho and Tanner (2005a,b, 2009) take a different approach by studying the convex

geometric properties based on A instead of the RIP conditions to derive conditions when the

solutions of (P0) and (P1) are the same.

Existing algorithms for solving the convex program (P1) include interior-point methods

(Candès et al., 2006; Kim et al., 2007), projected gradient methods (Figueiredo et al., 2008),

first-order methods (Juditsky et al., 2014) and Bregman iterations (Yin et al., 2008). Besides

algorithms that solve the convex program (P1), several greedy algorithms have been proposed,

including matching pursuit (Mallat and Zhang, 1993) and its many variants (Tropp, 2004;

Donoho et al., 2006; Needell and Vershynin, 2009; Needell and Tropp, 2010; Donoho et al.,

2009; Foucart, 2011). To achieve more scalability, combinatorial algorithms such as the so-

called “Heavy Hitters on Steroids” (HHS) pursuit algorithm (Gilbert et al., 2007) and sub-linear

Fourier transform (Iwen, 2010) have also been developed.

In this paper, we revisit the optimization aspects of the classical compressed sensing for-

mulation (P1) and one of its extensions, Kronecker compressed sensing (Duarte and Baraniuk,

2012). We consider two ideas for accelerating iterative algorithms. One reduces the total number

of iterations, and the other reduces the computation required to do an iteration. We demon-

strate the effectiveness of these ideas by thorough numerical simulations.

Our first idea, an optimization algorithm, is motivated by the fact that if the desired solution

is very sparse, it should be reached after a relatively small number of simplex iterations starting

from the zero vector. Such an idea motivates the usage of an optimization algorithm that can

exploit the solution sparsity, e.g, the parametric simplex method (see, e.g., Vanderbei (2007);

Dantzig (1998)). In this paper, we propose a customized parametric simplex method. Compared

to standard simplex methods, our algorithm exploits a new pivot rule tailored for compressed
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sensing problems. It is well known that slightly altering the pivot rules and formulation of

the simplex method can result in a significant increase in computational speed (Forrest and

Goldfarb, 1992; Pan, 2008).

While the simplex method has an exponential computational complexity in the worse case

(Klee and Minty, 1972), we emphasize that the parametric simplex method is a suitable opti-

mization method for our compressed sensing problem. This matches existing theoretical results

on the simplex method that state the “average complexity” or “smoothed complexity” of the

simplex method is polynomial. See Adler et al. (1987); Spielman and Teng (2004); Post and

Ye (2015) and the references within.

Our second idea, a problem reformulation, requires the sensing matrix A to be the Kro-

necker product of two smaller matrices, B and C. Since we are typically allowed to design the

sensing matrix A ourselves, this requirement does not impose any practical limitations. This

formulation results in a Kronecker compressed sensing (KCS) problem that has been consid-

ered before (Duarte and Baraniuk, 2012). In our paper, we reformulate the linear program to

ensure the constraint matrix is very sparse so that the problem can be solved efficiently. The

computational advantage of using sparse constraint matrices has been well established in the

linear programming literature (Vanderbei, 1991; Lustig et al., 1991; Gill et al., 1991; Vanderbei,

1993). While most optimization research in compressed sensing focuses on creating customized

algorithms, our approach uses existing algorithms but a sparser problem formulation to speed

up computation. To the best of our knowledge, such an idea has not been exploited in the

compressed sensing literature yet.

Theoretically, KCS involves a tradeoff between computation and statistics: it gains compu-

tational advantages (as will be shown in the numerical section) at the price of requiring more

measurements (i.e., larger m). More specifically, using sub-Gaussian random sensing matrices

(to be defined later), whenever m = O(k2 log2(
√
n/k)), KCS recovers the true signal with

probability at least 1 − 4 exp(−C
√
m) for some constant C > 0. The sample requirement m

for KCS is grows quadratically with k, as compared to the linear rate of m = O(k log (n/k)) in

standard compressed sensing. We provide more details in later sections.

The rest of this paper is organized as follows. In the next section, we describe how to solve

the standard compressed sensing version (P1) of the problem using the parametric simplex

method. Then in Section 3 we describe the statistical foundation behind Kronecker compressed

sensing (KCS). In Section 4 we present the sparse formulation of KCS that dramatically speeds
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up existing optimization algorithms (such as interior point methods). In Section 5 we provide

numerical comparisons against state-of-the-art methods to show the advantage of our methods.

The problem formulations considered in Sections 2 through 5 involve no noise—the measure-

ments are assumed to be exact. In Section 6 we conclude and discuss how our methods can be

used to handle noisy or approximately-sparse settings of compressed sensing.

2 Compressed Sensing via the Parametric Simplex Method

Consider the following parametric perturbation to (P1) for a specified µ:

{x̂, ε̂} = argmin
x,ε

µ‖x‖1 + ‖ε‖1 (P2)

subject to Ax + ε = y,

where ε ∈ Rm denotes the residual. Since µ is a tuning parameter that affects the solution

x̂, we should denote the solution to (P2) as x̂µ, but for notational simplicity, we write x̂ as

shown in (P2) instead. For large values of µ, the optimal solution is x̂ = 0 and ε̂ = y. For

small, strictly-positive values of µ, the situation reverses: ε̂ = 0 and we’ve solved the original

problem (P1). Belloni and Chernozhukov (2011) considered the above formulation, and they

provide statistical guarantees on the solution for a particular magnitude of µ.

In this section, we require that the sensing matrix A satisfies a suitable k-RIP property

specified by the following lemma.

Lemma 1 (Cai and Zhang (2012)) For a small enough µ, let {x̂,0} be the optimal solution

of (P2), and let k = ‖x∗‖0 be the sparsity of vector x∗. If δk(A) < 1/3, then x̂ = x∗.

Problem (P2) is referred to as `1-penalized quantile regression. It can be solved by the

parametric simplex method (Vanderbei, 2007; Dantzig, 1998), which is a homotopy method

used for sensitivity and perturbation analysis. In particular, we start at a large value of µ

and successively reduce it to form a solution path. That is, the solution to Problem (P2) for

a particular value of µ serves as the initialization to solve the same problem for a smaller

value of µ. It can be shown that such a solution path is piecewise linear and all the transition

points can be easily calculated. Algorithmically, the parametric simplex algorithm calculates

the full solution path until we arrive at a value of µ for which the optimal solution has ε̂ = 0, at

which point we have solved the original problem (P1). The advantage of the parametric simplex
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method over the standard simplex method is that it solves the entire regularization path in

terms of µ. Specifically, each basic solution produced by the algorithm is optimal for some

interval of µ-values. Once the solution path indexed by µ is given, we could pick the desired

µ as specified in Belloni and Chernozhukov (2011) to satisfy certain statistical properties.

However, we focus on picking the first µ for which ε̂ = 0. More details of the parametric

simplex algorithm are illustrated in Figure 1.

Fig. 1 Illustration of the parametric simplex method. The horizontal line (black) corresponds to varying values

of µ. We explicitly use superscripts to denote the iteration counter for clarity (the solution path segment between

two consecutive transition points is called an iteration). The horizontal line is partitioned into a finite number

of intervals such that each interval corresponds to a solution {x, ε} that is optimal for any value of µ within

that interval. µ is initialized to be ‖A‖1, which ensures the initialization {x(0), ε(0)} is optimal. The algorithm

decreases µ toward 0 until it reaches a solution {x(T ), ε(T )} where ε(T ) = 0. Then x(T ) = x̂ is our desired

optimal solution to Problem (P1). If the solution to (P1) is unique, the interval corresponding to {x(T ), ε(T )}

will contain µ = 0. Since we obtain the entire solution path, other methods such as Belloni and Chernozhukov

(2011) can be used to pick the solution x(T−1) corresponding to µ∗, though it is not the focus of our paper.

To formulate (P2) as a linear program, we reparametrize it using nonnegative variables

and equality constraints. To this end, we split each variable into the difference between two

nonnegative variables:

x = x+ − x− and ε = ε+ − ε−,

where the entries of x+,x−, ε+, ε− are all nonnegative. The next step is to replace ‖x‖1 with

1T (x+ + x−) and to make a similar substitution for ‖ε‖1. In general, the sum x+j + x−j does

not equal the absolute value |xj | but it is easy to see that equality holds at optimality. This

is a well-known and standard technique for rewriting problems involving `1-norms as linear
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programs. The resulting linear program becomes

Simplex CS: min
x+,x−,ε+,ε−

µ1T (x+ + x−) + 1T (ε+ + ε−) (P3)

subject to A(x+ − x−) + (ε+ − ε−) = y

x+,x−, ε+, ε− ≥ 0.

For µ large enough, the optimal solution must be x+ = x− = 0, and ε+ − ε− = y. Given that

our variables are required to be nonnegative, we initialize ε+ and ε− according to

yi > 0 =⇒ ε+i = yi > 0 and ε−i = 0, (2)

yi < 0 =⇒ ε−i = −yi > 0 and ε+i = 0. (3)

The equality case can be decided either way. Such an initialization is feasible for arbitrary µ.

Furthermore, declaring the nonzero variables to be basic variables and the zero variables to be

nonbasic, we use this as our initial basic solution for the parametric simplex method. We note

that this initial solution is optimal for µ ≥ ‖A‖1 := max1≤j≤n
∑m
i=1 |aij |, the largest column-

wise `1 norm of A. That is, for any solution {x, ε} such that y = Ax + ε, our initial solution

setting x = 0 and ε = y will be the global optima: ‖y‖1 = ‖Ax + ε‖1 ≤ ‖A‖1‖x‖1 + ‖ε‖1 ≤

µ‖x‖1+‖ε‖1. The pseudo-code to initialize and determine µ is presented in Algorithm 1, where

Step 3 and Step 4 refer to the pivot step described in Chapters 7 and 8 of Vanderbei (2001).

Algorithm 1 Pseudo-Code for Parametric Simplex Method
Require: Inputs A and y as in Problem (P3).

1: Set µ = ‖A‖1,1. Set initial optimal solution to be x+ = x− = 0 and ε+ and ε− to follow (2) and (3)

respectively, as illustrated in Figure 1.

2: while ε+ + ε− 6= 0 do

3: Determine the smallest value of µ such that the current solution for (P3) is optimal.

4: For the current value of µ, apply a simplex pivot step to determine a new feasible solution.

5: end while

6: return The optimal solution to (P1), x̂ = x+ − x−.

3 Kronecker Compressed Sensing Formulation

In this section, we introduce the Kronecker compressed sensing idea (Duarte and Baraniuk,

2012). While Duarte and Baraniuk (2012) discusses Kronecker sensing to handle multi-dimensional
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signals, we show that representing one-dimensional signals as multi-dimensional signals will

bear computational benefits. Unlike the previous section where we required the sensing matrix

A to satisfy the k−RIP condition, in this section we impose a structural requirement on the

sensing matrix. In particular, for given matrices B and C, we consider the problem formulation

that has the following representation:

IPM CS: min ‖x‖1 subject to
(
B⊗C

)
x = y. (P4)

The matrices B and C are of size m1×n1 and m2×n2 respectively, and A, our sensing matrix,

is (m1m2)× (n1n2) and defined as the Kronecker product of B and C:

A := B⊗C =


Cb11 · · · Cb1n1

...
. . .

...

Cbm11 · · · Cbm1n1

 .
This Kronecker structural assumption on the new sensing matrix A motivates a new matrix-

based sensing strategy based on a left and right sensing matrix. To see this, assuming we want

to recover a signal vector x∗ ∈ Rn, we first reparameterize x∗ into a matrix X∗ ∈ Rn2×n1 by

assigning each consecutive length-n2 sub-vector of x∗ to a column of X∗. Here, without loss of

generality, we assume n = n1×n2. Then, the observed matrix Y is given by Y := CX∗BT . We

define ‖X‖0 :=
∑
i,j 1(xij 6= 0) and ‖X‖1,1 :=

∑
i,j |xij |. Let the vec(·) operator take a matrix

and concatenate its elements column-by-column to build one large column-vector containing

all the elements of the matrix.

Given Y ∈ Rm2×m1 and the sensing matrices B and C, we make one important observation.

Recall the constraint in Problem (P4). If y := Ax∗ where x∗ = vec(X∗), we have y = vec(Y).

This means that Problem (P4) is equivalent to

min ‖X‖1,1 subject to CXBT = Y. (P5)

In other words, if x̂ is the solution to (P4) and X̂ is the solution to (P5), then x̂ = vec(X̂).

Hence, we can interpret our Kronecker compressed sensing scheme as either having a Kronecker

structural assumption on A or having two separate (left and right) sensing matrices B and C.

Recall the definition of RIP given in Equation (1). To understand the statistical theory of

imposing the Kronecker structure on the sensing matrix A, we use Lemma 2 from Duarte and

Baraniuk (2012), which establishes the relationships between the k-RIP constants of δk(B),

δk(C), and δk(A).
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Lemma 2 (Duarte and Baraniuk (2012)) Suppose A = B⊗C. Then

1 + δk(A) ≤ (1 + δk(B))(1 + δk(C)). (4)

In addition, we define a sub-Gaussian distribution as follows.

Definition 1 (Sub-Gaussian Distribution) We say a mean-zero random variable X follows

a sub-Gaussian distribution if there exists some σ ∈ R+ such that

E exp (tX) ≤ exp

(
σ2t2

2

)
for all t ∈ R.

It is clear that the Gaussian distribution with mean 0 and variance σ2 satisfies the above

definition. The next theorem provides sufficient conditions for perfect recovery of KCS.

Theorem 1 Suppose the entries of matrices B and C follow a sub-Gaussian distribution with

parameter σ. Then there exists a constant C > 0 (depending on σ) such that whenever

m1 ≥ C · k log (n1/k) and m2 ≥ C · k log (n2/k) ,

the convex program (P5) attains perfect recovery with probability

P
(
X̂ = X∗

)
≥ 1−

(
2e−

m1
2C + 2e−

m2
2C

)
︸ ︷︷ ︸

ρ(m1,m2)

.

Proof (for Theorem 1) We use the equivalence between Problem (P5) and Problem (P4). From

Lemma 1 and Lemma 2, it suffices to show that δk(B) and δk(C) are both less than 2/
√

3− 1.

Let τ := 2/
√

3− 1. From Theorem 9.2 of Foucart and Rauhut (2013), there exist constants C1

and C2 (depending on σ) such that if m1 ≥ 2C1τ
−2k log(n1/k) and m2 ≥ 2C2τ

−2k log(n2/k),

then

P
(
δk(B) <

2√
3
− 1 and δk(C) <

2√
3
− 1

)
= 1−

(
P (δk(B) ≥ τ) + P (δk(C) ≥ τ)

)
≥ 1−

(
2e−

τ2m1
2C1 + 2e−

τ2m2
2C2

)
≥ 1− ρ(m1,m2).

ut

An analogous result can be derived from the results in Duarte and Baraniuk (2012) which

uses the wavelet basis. From the above theorem, we see that for m1 = m2 =
√
m and n1 =

n2 =
√
n, whenever the number of measurements satisfies

m = O

(
k2 log2

(√
n

k

))
, (5)
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we have X̂ = X∗ with probability at least 1− 4 exp(−C
√
m) for some constant C.

Here we compare the above result to that of (standard) compressed sensing problem (P1).

Following the same argument as in Theorem 1, whenever

m = O

(
k log

(n
k

))
, (6)

we have x̂ = x∗ with probability at least 1 − 2 exp(−Cm). Comparing (6) to (5), we see

that KCS needs more stringent conditions for perfect recovery. Specifically, for a fixed n, as

k (the unknown sparsity level) increases, the required number of samples for KCS will grow

quadratically with k rate as opposed to linearly. However, in the next section and in the

numerical results, we will see that KCS enjoys a tremendous improvement in computation time.

This will illustrate our tradeoff between computational performance and statistical recovery.

4 Sparsifying the Constraint Matrix for Efficient Computation

We can use standard LP algorithms such as an interior-point algorithm to solve (P4). However,

to achieve improved computational performance, we carefully formulate the problem so that

our algorithm can explicitly exploit the Kronecker structure of A. The key to efficiently solving

the linear programming problem associated with the Kronecker sensing problem lies in noting

that the dense, Kronecker product A can be factored into a product of two sparse matrices:

A =


Cb11 · · · Cb1n1

...
. . .

...

Cbm11 · · · Cbm1n1

 =



C 0 · · · 0

0 C · · · 0

...
...

. . .
...

0 0 · · · C





b11In2 b12In2 · · · b1n1In2

b21In2 b22In2 · · · b2n1In2

...
...

. . .
...

bm11In2
bm11In2

· · · bm1n1
In2


=: VW,

where In2 denotes an n2 × n2 identity matrix and 0 denotes an m2 ×m2 zero matrix. Notice

that while the matrix A is usually completely dense, it is a product of two very sparse matrices:

V = Im1 ⊗C ∈ Rm×m1n2 and W = B⊗ In2 ∈ Rm1n2×n. Hence, if we introduce new variables

z, we can rewrite (P4) equivalently as

min
x,z
‖x‖1 (P6)

subject to Wx− z = 0

Vz = y.
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Using our previous matrix notation, we can rewrite (P6) as

IPM KCS: min
X,Z

‖X‖1,1 (P7)

subject to CX− Z = 0

ZBT = Y.

If we want to use a parametric simplex method to solve (P6), we can, as before, split x and

ε into a difference between their positive and negative parts and enforce equality constraints

to convert the problem into a linear program:

Simplex KCS: min
x+,x−,ε+,ε−,z

µ1T (x+ + x−) + 1T (ε+ + ε−) (P8)

subject to z −W(x+ − x−) = 0

Vz + (ε+ − ε−) = y

x+,x−, ε+, ε− ≥ 0.

This formulation (P8) has more variables and more constraints than (P3), but now the

constraint matrix is very sparse. We reiterate that while (P8) and (P3) are mathematically

equivalent when A is a Kronecker product, the reparameterization in (P8) is more amendable

to fast computational performance. Specifically, for linear programming, the sparsity of the

constraint matrix is a significant contributor towards computational efficiency (Vanderbei,

1991; Gill et al., 1991). In fact, we can view the decomposition in (P7) as a sparsification

technique analogous to one step of the fast-Fourier optimization idea described in (Vanderbei,

2012).

5 Numerical Results and Comparisons

Before showing our simulation results, we briefly describe three other popular methods to solve

compressed sensing problems: `1 `s, Mirror Prox, and Fast Hard Thresholding Pursuit. We will

compare the performance of our method against these three methods on noiseless compressed

sensing problems.

Proposed Methods: In this paper, we have presented two ideas, the parametric simplex

method (an optimization algorithm) and Kronecker compressed sensing (a problem reformula-

tion). We have made implementations that use these two ideas either separately or jointly. We

use “KCS” to refer to optimization problems that explicitly exploit sparsity structure in the
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formulation, (P7) and (P8). We modify the parametric simplex algorithm described in Van-

derbei (2007) implemented in C found at http://www.orfe.princeton.edu/~rvdb/LPbook/

src/index.html, to solve both (P3) and (P8). We refer to these implementations as “Simplex”

and “Simplex KCS” respectively in our simulation results. We also use an interior-point solver

called loqo (Vanderbei (1999)) to solve (P4) and (P7). We refer to these implementations as

“IPM” and “IPM KCS” respectively in our simulation results.

(Specialized) Interior-Point Method: The `1 `s method (Kim et al., 2007) is a trun-

cated Newton interior-point method using a preconditioner to solve

x̂ = argmin
x
‖Ax− y‖22 + λ‖x‖1 (P9)

for a given regularization parameter λ. Since computing the Newton direction is computa-

tionally prohibitive for large-scale problems due to its Hessian, `1 `s circumvents this problem

by approximating the Newton direction using preconditioned conjugate gradients. In general,

interior-point methods are very efficient because they use second-order information. The Mat-

lab code for this algorithm can be found at http://stanford.edu/~boyd/l1_ls/.

Greedy Method: Fast Hard Thresholding Pursuit (FHTP) (Foucart, 2011) is a greedy

algorithm that alternates between two steps to approximately solve

x̂ = argmin
x:‖x‖0=k

‖x‖1 : Ax = y (P10)

for a given sparsity level k. In the first step, it chooses the best k coordinates of x according to

a certain criterion, and in the next step it optimizes x for only thse k coordinates while setting

the remaining coordinates to 0. This algorithm is appealing because of its simplicity and its

exact recovery as long as A satisfies an RIP condition and k is correctly chosen. The Matlab

code for this algorithm can be found at http://www.math.drexel.edu/~foucart/HTP.zip.

First-Order Method: The Mirror Prox algorithm (Juditsky et al., 2014) is a first-order

algorithm that solves

x̂ = argmin
x
‖x‖1 : ‖Ax− y‖2 ≤ δ (P11)

for a given tolerance δ by reformulating the problem as a saddle-point problem and using a

proximal method to solve its variational inequality. First-order algorithms are favored in com-

pressed sensing literature for their computational speed since they avoid calculating the Hessian

matrix, and saddle point formulations are advantageous because they naturally combine the

http://www.orfe.princeton.edu/~rvdb/LPbook/src/index.html
http://www.orfe.princeton.edu/~rvdb/LPbook/src/index.html
http://stanford.edu/~boyd/l1_ls/
http://www.math.drexel.edu/~foucart/HTP.zip
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primal and dual of the problem via variational inequalities. The Matlab code for this algorithm

can be found at http://www2.isye.gatech.edu/~nemirovs/MirrorProxJan10_2012.zip.

Experimental Protocol: In the rest of this section, let x∗ denote the true signal and x̂

denote the estimated signal using one of the above algorithms. We measure the accuracy of the

solution by

Relative `1 error:
‖x∗ − x̂‖1
‖x∗‖1

and `∞ error: ‖x∗ − x̂‖∞.

We compare five different algorithms, the parametric simplex method, the interior point

method, `1 `s, FHTP and Mirror Prox at different sparsity levels k. FHTP requires two different

modes, oracle and agnostic. In the former, FHTP is given the true sparsity of x∗. In the latter,

FHTP is always given a sparsity of 100 regardless of the true x∗.

Since each algorithm is solving a slightly different optimization problem, we devise a

methodology for fair comparison. An important quantity to achieve fairness is the impreci-

sion, ‖Ax̂ − y‖22, the degree to which the solution x̂ satisfies the constraints. We first apply

our proposed methods (Simplex KCS, IPM KCS, Simplex CS, IPM CS) and record their im-

precision. Since simplex methods are exact algorithms, we cannot reasonably expect the same

magnitude of constraint error with `1 `s (P9) and Mirror Prox (P11). Hence, we require these

last two to have imprecision of only up to two magnitudes more than the simplex-based algo-

rithms. For each k, we found that λ = 0.01 in (P9) achieves a comparable imprecision. Given

the solution to `1 `s, we can easily set δ in (P11) to match the precision. The parametric simplex

method and oracle FHTP naturally achieve the highest precision in most cases.

To ensure that each optimization algorithm is solving the same problem, we sample A and

B as Gaussian matrices where each entry is a standard Gaussian (mean 0, standard deviation

1). “Simplex KCS” and “IPM KCS” use the matrices V = I⊗C and W = B⊗ I, while all the

other methods use the sensing matrix A = B ⊗C. In the following, we perform two different

simulation sets. In the first simulation set, we vary the sparsity level of x. In the second, we vary

the length of x. In either simulation set, we simulate 10 trials for each sparsity level or length.

Instructions for downloading and running the various codes/algorithms described in this section

can be found at http://www.orfe.princeton.edu/~rvdb/tex/CTS/kronecker_sim.html.

Results: (Varying Sparsity) In the first simulation set, we vary the true sparsity level

by generating random problems using m = 1,122 = 33× 34 and n = 20,022 = 141× 142 and

vary the number of nonzeros k in signal x∗ from 2 to 150.

http://www2.isye.gatech.edu/~nemirovs/MirrorProxJan10_2012.zip
http://www.orfe.princeton.edu/~rvdb/tex/CTS/kronecker_sim.html
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Table 1 provides time measured in seconds, the relative `1 error and the `∞ error averaged

across 10 trials for each level of sparsity. All the simulation times are shown in Figure 2. There

are two observations. First, when the true sparsity is very small (k ≤ 70), the parametric

simplex method without the Kronecker structure (Simplex) outperforms most modern methods

in terms of precision and time. Second, we see that previously slow methods (Simplex and

IPM) are tremendously sped up once the problem is formulated using the Kronecker structure

(Simplex KCS and IPM KCS). There is roughly a ten-fold improvement in speed. In fact, IPM

KCS is uniformally faster than `1 `s and Mirror Prox. Our results show that if our sensing

matrix has Kronecker structure and our algorithm is adapted to exploit the this property,

simplex and interior point methods are highly competitive.

Fig. 2 Solution times for a large number of trials having m = 1,122, n = 20,022, and various degrees of sparsity

in the underlying signal. The horizontal axis shows the number of nonzeros in the signal. The vertical axis gives

a semi-log scale of solution times. The error bars have lengths equal to one standard deviation based on the

multiple trials. Between Simplex KCS and IPM KCS, we outperform `1 `s and Mirror Prox.
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In four of the trials for Simplex throughout the entire simulation set, the solver erroneously

reported that the solution was unbounded. We suspect this is due to numerical imprecision

after the hundreds of thousands of simplex iterations for large values of k. This is not unex-

pected since we coded the entire parametric simplex method ourselves in C instead of using

commercialized functions in Matlab.

(Varying Size) In the second simulation set, we vary the problem size by fixing the number

of nonzeros k in signal x∗ to 100 and constructing random problems using m = 1,122 = 33×34

and varying n = 141 × 142 to n = 141 × 402. Let n2 denote the varying dimension. Table 2

shows the same attributes as in the previous table. As shown in Figure 3, the relative order of

the seven algorithms mostly persists throughout the simulation set. In particular, in all cases

tried, Simplex KCS outperforms `1 `s and Mirror Prox. IPM KCS outperforms most methods

throughout the entire simulation set.

6 Discussion and Conclusions

We revisit compressed sensing from an optimization perspective. We advance the field of com-

pressed sensing in two ways.

First, despite having an exponential worst-case complexity, the parametric simplex method

is competitive for very sparse signals. It outperforms `1 `s and Mirror Prox under this regime

(and we suspect many other methods) in both time and precision. Also, by adopting a para-

metric simplex method, we solve the problem for all values of µ, thereby finding the entire

solution path in one shot. This feature of the parametric simplex method allows the user to

pick a particular value of µ or take the largest µ for which ε = 0. Our paper focused on the

latter.

Second, if we use the Kronecker structure, both the parametric simplex and interior point

methods speed up ten-fold, making them competitive with other modern CS algorithms. But,

as explained earlier, the Kronecker sensing problem involves changing the underlying problem

being solved. The sensing matrix is now viewed as the Kronecker product of two sub-Gaussian

matrices. While we presented this idea using only the parametric simplex and interior point

methods, we expect this idea to benefit most optimization methods. This is left for future in-

vestigation. The Kronecker idea is inspired by the fast-Fourier transform where dense matrices

are split into products of sparse matrices (Vanderbei (1991), Vanderbei (2012)). Hence, any op-
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Sparsity k = 2 Sparsity k = 20

Time (Sec) Rel. `1 Error `∞ Error Time (Sec) Rel. `1 Error `∞ Error

Simplex KCS 1e-8 0 0 2.000 0 0

IPM KCS 44.650 3.71e-10 9.41e-8 48.000 1.98e-8 1.36e-6

Simplex 2.000 0 0 3.500 0 0

IPM 730.350 3.78e-10 9.73e-8 758.700 2.54e-10 9.23e-8

l1ls 110.120 6.02e-6 1.08e-5 96.753 9.68e-6 0.00010

Mirror Prox 28.070 0.00025 0.00099 82.740 0.00143 0.01535

FHTP (Oracle) 16.912 1.30e-11 2.60e-11 14.270 2.67e-5 8.79e-5

FHTP (Agnostic) 191.575 0.25993 4.67440 196.25500 0.17329 3.49615

Sparsity k = 50 Sparsity k = 70

Time (Sec) Rel. `1 Error `∞ Error Time (Sec) Rel. `1 Error `∞ Error

Simplex KCS 12.000 0 0 25.500 0 0

IPM KCS 47.700 3.41e-8 7.62e-6 48.950 3.67e-8 6.95e-6

Simplex 19.500 0 0 66.000 0 0

IPM 758.700 3.49e-8 7.62e-6 821.250 4.23e-8 2.65e-6

l1ls 170.315 1.45e-5 0.00031 267.155 1.84e-5 0.00052

Mirror Prox 42.840 0.00011 0.06293 64.030 0.00015 0.11449

FHTP (Oracle) 13.273 0.00020 0.00160 15.575 0.00017 0.00144

FHTP (Agnostic) 146.215 0.00504 1.773 35.64750 0.00518 1.42405

Sparsity k = 100 Sparsity k = 150

Time (Sec) Rel. `1 Error `∞ Error Time (Sec) Rel. `1 Error `∞ Error

Simplex KCS 70.500 0 0 462.500 4.50e-6 0.00017

IPM KCS 49.950 5.2e-7 2.31e-5 56.500 1.40e-5 0.00136

Simplex 234.500 0 0 1587.500 2.00e-6 0.00010

IPM 783.450 5.31e-7 0.00035 794.500 1.50e-5 0.00150

l1ls 377.315 2.43e-5 0.00104 789.165 9.79e-5 0.00683

Mirror Prox 410.050 0.00011 0.42348 635.085 0.00036 2.43170

FHTP (Oracle) 16.231 0.00040 0.00471 79.677 0.01460 128.01000

FHTP (Agnostic) 20.439 0.00040 0.00471 148.945 0.01646 145.07500

Table 1 This table shows the time (seconds), relative `1 error and relative `∞ error for 6 selected sparsity levels

averaged (median) over 10 trials. If the median value is smaller than 1e-4, we write out at least two significant

digits in scientific notation. We write “0” to denote exact recovery (achieved by only the simplex method). The

first two rows of each table represent our proposed methods. Parametric simplex method outperforms other

methods for very sparse problems k ≤ 70. Naturally, FHTP (oracle) is the fastest for k ≤ 100, but we see

that both our methods outperform FHTP in relative `1 error and uniform error. By incorporating Kronecker

structure, we see that previously slow methods can experience a drastic speed-up (i.e., the difference between

IPM and IPM KCS).
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Fig. 3 Solution times for a large number of trials having m = 1, 122 and k = 100. The number of dimensions

for x∗ in each trial is n = 141× n2, and the horizontal axis shows the range of n2. The vertical axis and error

bars denote the same quantities as in Figure 2. IPM KCS outperforms most methods throughout the entire

simulation set.

timization method that accommodates sparse matrix multiplication operations can potentially

be altered to benefit further from a Kronecker compressed sensing scheme. The theoretical guar-

antees for using Kronecker compressed sensing are more stringent, however, which illustrates

the tradeoff between computational efficiency and statistics.

In most applications, we expect some noise to corrupt the true signal. As long as the signal-

to-noise ratio is high, we can adapt our methods to handle inexact constraints. Furthermore,

the parametric simplex method computes solutions for all values of µ. As mentioned before, we

can pick the solution associated with the value suggested in Belloni and Chernozhukov (2011)

to achieve statistical properties for noisy cases. If we have a specific residual size ‖ε‖1 that we

are willing to tolerate, we can pick the appropriate solution from the solution path. On the
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Size n2 = 102 Size n2 = 202

Time (Sec) Rel. `1 Error `∞ Error Time (Sec) Rel. `1 Error `∞ Error

Simplex KCS 23.500 0 0 165.500 1.50e-6 1.50e-5

IPM KCS 40.732 3.54e-8 6.34e-8 92.351 2.56e-6 5.23e-5

Simplex 55.300 0 0 552.500 2.50e-6 2.50e-5

IPM 452.140 2.64e-8 4.34e-8 1409.206 6.35e-6 6.54e-5

l1ls 359.672 3.54e-5 1.21e-5 691.541 2.21e-5 1.62e-5

Mirror Prox 421.268 0.00985 0.00242 502.532 0.00983 0.00357

FHTP (Oracle) 24.327 0.30032 0.01964 115.465 0.51763 0.10540

Size n2 = 302 Size n2 = 402

Time (Sec) Rel. `1 Error `∞ Error Time (Sec) Rel. `1 Error `∞ Error

Simplex KCS 652.100 0.20000 0.00200 1750.100 0.50000 0.01023

IPM KCS 185.532 0.01729 0.40000 306.290 0.00966 0.40001

Simplex 2283.200 0.01063 0.01065 5555.700 0.01594 0.01597

IPM 3143.280 0.09238 0.01829 6503.130 0.12620 0.01810

l1ls 1541.290 0.20003 0.01731 2575.930 0.60002 0.09930

Mirror Prox 1043.022 0.21061 0.02327 1682.610 0.60639 0.12080

FHTP (Oracle) 382.556 1.16788 0.47230 727.805 1.19667 0.87309

Table 2 This table, similar format as Table 1, shows 4 selected dimension sizes n2 averaged (median) over 10

trials. Simplex KCS and IPM KCS outperform most methods in terms of time and accuracy. The parametric

simplex (without Kronecker structure) performs better than `1 `s for k = 100 even as n2 grows. Note that the

`∞ error for n2 = 402 is large for `1 `s, Mirror Prox and FHTP, meaning at least one dimension is drastically

incorrect.

other hand, if one were interested settings where x is approximately sparse and we wanted to

recover the s-largest entries of x, one could use either our “Simplex” or “IPM KCS” method.

The relation between the solution and the true signal can then be determined through existing

theory in Candès (2008). In future work, we plan to investigate noisy and approximately sparse

settings more thoroughly and extend the proposed method to the setting of 1-bit compressed

sensing.
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