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1. The Subterranean Brachistochrone

A Brachistochrone is a frictionless track that connects two locations and along which an object

can get from the first point to the second in minimum time under only the action of gravity. Above

ground short-range Brachistochrones are well understood. Here we consider a subterranean

version in which the start and end points are widely separated on the surface of the Earth. This

version of the problem was first considered by several authors back in 1966 (see Cooper (1966a);

Kirmser (1966); Venezian (1966); Mallett (1966); Laslett (1966); Cooper (1966b)). A very nice

modern treatment can be found in Calkin (1999).

For any path, the time T to traverse from one end to the other can be written quite simply as

T =

∫
ds

v

where ds2 = dx2 + dy2 = dr2 + r2dθ2 denotes the incremental squared arc length along the path

and v denotes the speed at each point along the path.

Instantaneous speed is determined from conservation of energy as follows.

The force due to gravity above the surface of the Earth is F = −GMm/r2.

Below the surface, the effective mass of the Earth is reduced from M to M(r/R)3, where R

denotes the radius of the Earth and r denotes the distance the track is from the center of the Earth.

Hence, the gravitational force below the Earth’s surface is F = −GMmr/R3.

The gravitational force is the negative of the gradient of the potential energy field.

Hence, the kinetic plus potential energy at radius r and velocity v is given by

KE + PE =
1

2
mv2 +

1

2

GMm

R3
r2.

At the start, r = R and v = 0. Hence, by conservation of energy,

1

2
mv2 +

1

2

GMm

R3
r2 =

1

2

GMm

R
.
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Solving for v, we get

v =

√
GM

R

(
1− r2

R2

)
.

Hence, our integral for the time to traverse the path is given by

T =

∫ √
dr2 + r2dθ2√
GM
R

(
1− r2

R2

) =

√
R3

GM

∫ √
r′2 + r2√
R2 − r2

dθ.

Following standard notational conventions from the calculus of variations, let L(r, r′) denote the

integrand in the right-hand integral above. Because L depends only on r and r′ and not on θ, we

can use the Beltrami equation to describe a minimizer of this integral:

L− r′ ∂L
∂r′

= C

where C is an arbitrary constant. For our particular problem, we compute explicitly as follows:

L− r′ ∂L
∂r′

=

√
r′2 + r2√
R2 − r2

− r′ r′√
r′2 + r2

√
R2 − r2

=
r2√

r′2 + r2
√
R2 − r2

= C.

Solving for r′2, we get

r′2 = r2
(
r2 − C2(R2 − r2)
C2(R2 − r2)

)
.

Introducing a new notation for the constant,

r0 =
C√

1 + C2
R,

we can simplify the formula for the square of the derivative:(
dr

dθ

)2

= r2
R2

r20

r2 − r20
R2 − r2

.

Taking the (positive) square root of both sides and isolating the θ dependant quantities from the r

dependant ones, we get
R

r0
dθ =

√
R2 − r2
r2 − r20

dr

r
.
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So, to arrive at our formula relating r to θ, we integrate:

R

r0
θ =

∫ √
R2 − r2
r2 − r20

dr

r
.

All that remains is to compute this integral explicitly. To this end, we make the following change

of variable:

u =

√
r2 − r20
R2 − r2

.

To compute dr, it is helpful to solve for r as a function of u:

r =

√
u2R2 + r20

1 + u2
.

For dr, we get

dr =
u

r

R2 − r20
(1 + u2)2

du.

Putting this altogether, we compute the integral as follows:∫ √
R2 − r2
r2 − r20

dr

r
=

∫
1

u

u

r2
R2 − r20

(1 + u2)2
du

=

∫
1 + u2

u2R2 + r20

R2 − r20
(1 + u2)2

du

=

∫
R2 − r20

(u2R2 + r20)(1 + u2)
du

=

∫
R2 + u2R2 − u2R2 − r20

(u2R2 + r20)(1 + u2)
du

= R2

∫
du

u2R2 + r20
du−

∫
du

1 + u2
du

=
R

r0
tan−1

Ru

r0
− tan−1 u + C

=
R

r0
tan−1

R

r0

√
r2 − r20
R2 − r2

− tan−1

√
r2 − r20
R2 − r2

+ C

Hence, our equation relating θ to r can now be written as

θ = tan−1
R

r0

√
r2 − r20
R2 − r2

− r0
R

tan−1

√
r2 − r20
R2 − r2

+ C ′.
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Without loss of generality, we may assume that C ′ = 0.

If we let r = r0, then θ = 0.

If we let r = R, then θ =
(
1− r0

R

)
π
2
.

The formula as derived has one endpoint at the surface of the Earth and the other endpoint at the

nader given by r = r0. The entire path starts at the surface and returns to the surface. In other

words, it is two curves of the form shown. Hence, the angular extent of the path, ∆θ is simply

∆θ =
(

1− r0
R

)
π.

Example. For a tunnel that extends 45◦, we have r0 = 3
4
R.

2. Solution Via Numerical Optimization

3. Comparison Between Numerical Computation and Exact Result
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param pi := 4*atan(1);

param pi2 := pi/2;

param eps := 1e-15;

param n := 512;

param G := 6.67384e-11; # mˆ3 / kg sˆ2

param M := 5.972e+24; # kg

param R := 6.371e+6; # m

param theta {j in 0..n};

param dtheta {j in 1..n} := (theta[j] - theta[j-1]);

var r {j in 0..n} >= 0;

var rmid {j in 1..n} = (r[j]+r[j-1])/2;

var dr {j in 1..n} = (r[j] - r[j-1]);

var ds {j in 1..n} = sqrt( dr[j]ˆ2 + (rmid[j]*dtheta[j])ˆ2 );

var dt {j in 1..n} = 2*ds[j] / ( sqrt(eps+1-(r[j]/R)ˆ2) + sqrt(eps+1-(r[j-1]/R)ˆ2) );

minimize time: sqrt(R/(2*G*M)) * sum {j in 1..n} dt[j];

fix r[0] := R;

fix r[n] := R;

let {j in 0..n} r[j] := (j/n)*r[n] + (1-j/n)*r[0] - 2.0*R*(j/n)*(1-j/n);

let theta[0] := pi/2;

let theta[n] := pi/4;

#use a nonlinear interpolation that bunches near the endpoints

let {j in 0..n} theta[j] := sin(pi2*j/n)ˆ2*theta[n] + cos(pi2*j/n)ˆ2*theta[0];

option loqo_options "verbose=2 iterlim=2000 sigfig=12 inftol=1.3e-12";

solve;
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Fig. 1.— Tunnel paths spanning 10, 30, 45, 60, 90, and 120 degrees. The numerically obtained

solution is shown as a solid line. The dashed line of the same color is the exact solution. Note that

the two solutions match with high percision in all cases except the 120 degree example.
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